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ABSTRACT: Catalytic activity predictions and the identification of active sites rely on
precisely determining the dominant reaction mechanism. The activity governing
mechanism and products could vary with the catalyst material, which can be described
by material descriptor(s), typically the binding strength(s) of key intermediate species.
Density functional theory calculations can be used to identify dominant reaction
mechanisms. However, the dominant reaction mechanism is sensitive to the choice of
the exchange-correlation functional. Here, we demonstrate this using the chlorine
evolution reaction on rutile oxides as an example, which can occur through at least
three reaction mechanisms each mediated by different surface intermediates and active
sites. We utilize Bayesian error estimation capabilities within the BEEF-vdW exchange-
correlation (XC) functional to quantify the uncertainty associated with predictions of
the operative reaction mechanism by systematically propagating the uncertainty
originating from DFT-computed adsorption free energies. We construct surface
Pourbaix diagrams based on the calculated adsorption free energies for rutile oxides of
Ru, Ir, Ti, Pt, V, Sn, and Rh. We utilize confidence value (c value) to determine the degree of confidence in the predicted
surface phase diagrams. Using the scaling relations between the adsorption energies of intermediates, we construct a generalized
Pourbaix diagram showing the stable surface composition as a function of potential and the oxygen binding energy on the cus
site (ΔEO

c). This allows us to incorporate consistency between activity and surface stability, which is necessary to determine
activity volcano relationships for surface reactivity. We incorporate the uncertainty in linear scaling relations to quantify the
confidence in generalized Pourbaix diagram and the associated activity. This allows us to compute the expectation limiting
potential as a function of ΔEO

c, which provides a more appropriate activity measure incorporating DFT uncertainty. We show
that the confidence in the classification problem of identifying the active reaction mechanism is much higher than that for the
prediction problem of determining catalytic activity. We believe that such a systematic approach is needed for accurate
determination of activities and reaction pathways for multielectron electrochemical reactions such as N2 and CO2 reduction.
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1. INTRODUCTION

Amajor challenge in surface electrocatalysis involves identifying
the dominant reaction mechanism from the many possible
competing electrochemical reactions at the electrode/electro-
lyte interface.1 This is further complicated by the dynamic state
of the surface depending on the external conditions: e.g.,
electrode potential, pH, and aqueous electrolyte.2−5 The
coupling between surface state and dominant reaction
mechanism is crucial for important electrochemical reactions
like chlorine evolution,5 hydrogen evolution,6 nitrogen reduc-
tion,7 and carbon dioxide reduction.8−14

Experimentally, macrokinetic measurements, to determine
reaction orders, pH dependence, and Tafel slope, can provide
useful insights but typically several competing mechanistic
pathways could still provide a plausible explanation for all the
data.5,15 An emerging frontier is using spectroscopic methods to
identify stable surface species, e.g., infrared spectroscopy and
ambient pressure XPS in conjunction with electrochemical

measurements, to identify the dominant mechanistic path-
ways.12,16−19

First-principles calculations have been used to identify
probable reaction mechanisms through a combination of surface
Pourbaix diagrams and free energy diagrams for the different
mechanistic pathways.5,20 However, it is well-known that DFT
calculations have finite accuracy; hence, a key question that
emerges is the likelihood of the identified dominant reaction
pathways. Systematic progress in quantifying uncertainty within
DFT has been made with the incorporation of Bayesian error
estimation capabilities21 into exchange-correlation functionals.
This has been used to quantify the uncertainty associated with
reaction rates in heterogeneous catalysis22 and electrocatalysis.23

More recently, we showed that uncertainty quantification can be
used as a tool to decide the most appropriate descriptor for
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computational predictions.24 However, these analyses make
simplistic assumptions about the state of the surface and do not
incorporate a self-consistent loop between activity and surface
stability, necessary to determine surface reactivity.
In this work, we demonstrate an approach to accurately

incorporate a self-consistent loop between surface state and
reaction pathways while systematically incorporating uncer-
tainty associated with chemisorption energies. We apply this
approach to an important electrochemical reaction, chlorine
evolution. This reaction is chosen for its industrial importance25

and the complexities involved in mapping the selectivity with
respect to oxygen evolution reaction.26 Prior work by Hansen et
al.5 showed that the overpotential for oxygen evolution to occur
on rutile oxides, which involves three oxygen intermediates, is
always higher than that for chlorine evolution.27 This can be
rationalized on the basis of the fact that finding a catalyst
material for an electrochemical reaction involving more
elementary steps is generally challenging owing to inherent
scaling relations.28 Hence, we focus on the reaction mechanisms
for the chlorine evolution reaction on rutile oxides. In this
analysis, we begin with constructing the Pourbaix diagram for
rutile oxides of Ru, Ir, Ti, Pt, V, Sn, and Rh. Inspired by the work
of Hansen et al.,5 we determine a generalized Pourbaix diagram
with the activity volcano relationships of the multiple reaction
mechanisms to develop a generalized trimodal activity relation-
ship. We use a previously defined quantity, c value, to quantify
confidence in surface phase diagrams. Through the error-
estimation approach, an ensemble of generalized Pourbaix
diagrams are constructed that lead to an ensemble of generalized
activity relationships. We compute the expected activity for a
range of material descriptor values, which is the probability-
weighted average of the predicted limiting potentials. Finally, we
utilize this approach to determine the likelihood of reaction
mechanisms for different material descriptor values. We quantify
this through a variant of the c value metric to determine the
reaction mechanism prediction confidence. An important
conclusion is that confidence associated with reaction
mechanisms is much greater than the predicted activity values.
We believe this will be crucial to accurately understand different
reaction mechanisms and thereby the activity and the nature of
the active site.

2. METHODS
2.1. Calculation Details. Calculations were performed

using the projector augmented-wave (PAW) method29 as
implemented in the GPAW package30 using the Bayesian error
estimation functional with van der Waals correlation (BEEF-
vdW), which has built-in error estimation capabilities. This
functional is developed on the basis of Bayesian statistics, which
defines the probability distribution (P) for themodel parameters
(a) given a model (θ) and training data set (D) as P(a|θ, D) ≈
exp[−C(a)/τ]. Here, C(a) is the cost function consisting of a
squared error term and a regularization term to avoid overfitting
and τ is a cost “temperature”. Given a data set D (comprising of
several experimental sets of energetic and structural data
describing bonding in chemical and condensed matter systems),
themodel perturbation δa is associated with a certain probability
that defines an ensemble of exchange correlation functionals.31

The electron density of a self-consistent DFT calculation
converged using the best-fit model parameters is used along with
the distribution of fitting parameters to non-self-consistently
generate an ensemble of energies which is representative of the
error in the predictions of the best-fit functional with respect to

the experimental training data.22,23,31−33 The cost temperature
(τ) is chosen with no rescaling,22 consistent with prior
work,23,24,32,33 such that generated ensemble energies reproduce
the known experimental errors in the entire benchmark data set.
A periodically repeated slab with 12 atomic layers (4 O−M−

O repeat units; M =metal) is chosen for all the considered rutile
oxide (110) surfaces of RuO2, IrO2, TiO2, PtO2, RhO2, SnO2,
and VO2.

27 A schematic of the surface used in this work is shown
in Figure S1 in the Supporting Information. A 4 × 4 × 1
Monkhorst−Pack type k-point grid was used for a 2 × 1 surface
unit cell with two bridge and two cus (superscript b and c,
respectively) sites. The two bottom layers of the unit cell were
kept fixed, and the top two layers with the adsorbates were
allowed to relax with a force criterion of <0.05 eV/Å. A Fermi
smearing of 0.01 eV was used, and all calculated energies were
extrapolated to an electronic temperature of 0 K.
Following the work of Hansen et al.,5 we considered

adsorption of the intermediates OHb and Ob at the bridge site
and adsorption of Oc, HOc, Clc, HOOc, and ClOc at the
coordinatively unsaturated site (cus) and the adsorption of O2

cc

and Cl(Oc)2 at adjacent cus sites. All relevant combinations
involving the two adsorption sites and the various adsorbates
were considered. For the range of reaction conditions relevant to
chlorine evolution, the bridge sites bind intermediates relatively
strongly and are thereby covered with oxygen. The adsorption
energies of the considered adsorbates are referenced to chlorine
and hydrogen gas.5 We use gas-phase H2O as the reference state
for oxygen, by assuming chemical equilibrium with liquid water
at 298 K and 0.035 bar,34 to avoid the well-known errors made
by DFT in describing O2. Additionally, the effect of electric field
in theHelmholtz layer is not taken into account, since its effect is
negligible for adsorbates with small dipole moments perpen-
dicular to the surface.35

The effect of solvation based on the foundational under-
standing developed on the interaction of water onmetal surfaces
has led to improved activity predictions.36−40 The effect of the
interaction of water and the solvation structure of water and
oxygen intermediates are not established for the case of rutile
oxides. A synergistic theoretical and experiment effort involving
both ab initio molecular dynamics and X-ray spectroscopy is
necessary to develop an understanding of the interaction
between rutile oxides and water hydroxyl layers.41 Therefore,
in this work, the effect of solvation is assumed to be negligible on
the considered oxide surfaces owing to the hydrophobicity of
oxide surfaces, due to which a well-connected water network is
typically not in registry with the underlying catalyst surface.42,43

2.2. Quantifying Confidence in Predicted Surface
States. Pourbaix diagrams represent the landscape of the
most thermodynamically stable state (minimum Gibbs free
energy of adsorption) of a given surface over a range of operating
potentials (U) and pH values. The ensemble of functionals
results in an ensemble of Pourbaix diagrams, allowing us to
obtain ameasure of the confidence in a predicted surface state by
quantifying the agreement between functionals. More precisely,
we use the confidence value33 (c value), which in this context can
be defined as the fraction of the ensemble that is in agreement
with the hypothesis of the best-fit (or optimal BEEF-vdW)
functional, and is given by
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where, si∈S, the set of all considered surface states, Nens is the
total number of functionals in the ensemble, and sopt is the
thermodynamically stable surface state predicted by the BEEF-
vdW optimal functional at a given U and pH. ΔGsi

n refers to the
adsorption free energy of the ith surface state given by the nth
member of the ensemble of functionals. Θ(x) denotes the
Heaviside step function.
2.3. Reaction Mechanisms and Expected Activity. We

define the activity in terms of the limiting potential (UL), given
by the lowest potential at which all the involved reaction steps
are downhill in free energy. The thermodynamic analysis forms a
necessary criterion but could be insufficient, as we do not
incorporate activation energies in the study due to the associated
computational challenges in calculating them. It has been shown
that this analysis remains consistent with a wide range of
experiments on metals and alloys for oxygen reduction even
when kinetics is taken into account.44 Further, this framework
has been used to rationalize trends in reactivity for oxygen
reduction,45 oxygen evolution,27 and hydrogen evolution.46

The activity of rutile oxides is a function of the reaction
pathway by which chlorine evolution could occur. We consider
all the possible reaction mechanisms based on the thermody-
namically stable chlorine containing reaction intermediates.
(I) Pathway mediated by the intermediate ClOc:

+ → +− −O Cl (aq) ClO ec c

+ + → + +− − −ClO e Cl (aq) O Cl (g) 2ec c
2

The limiting potential for this mechanism can be given as

= + |Δ − Δ |U U G G e(ClO ) (O ) /L
eq c c

(II) Pathway mediated by the intermediate Cl(Oc)2:

+ → +− −O Cl (aq) Cl(O ) e2
cc c

2

+ + → + +− − −(Cl O ) e Cl (aq) O Cl (g) 2ec
2 2

cc
2

The limiting potential for this mechanism can be given as

= + |Δ − Δ |U U G G e(Cl(O ) ) (O ) /L
eq c

2 2
cc

(III) Pathway mediated by the intermediate Clc:

+ → +− −Cl (aq) c Cl ec

+ + → + +− − −Cl e Cl (aq) c Cl (g) 2ec
2

The limiting potential for this mechanism can be given as

= + |Δ |U U G e(Cl ) /L
eq c

We compute the expected limiting potential, UEL(ΔEO
c),

which is determined as the probability-weighted average of the
limiting potential distribution, given by

∫= [ ] =U E U U p U U( ) d
U

U

EL L L L L
L
min

L
max

(2)

where p(UL) is normalized such that ∫ Umin

Umaxp(UL) dUL = 1.
24 This

approach relies on computing the probability distribution
(Figure 4) of the predicted limiting potentials for chlorine
evolution using the ensemble of the predicted activity volcanoes
and the associated generalized phase diagrams (refer to section
3.3).

2.4. Quantifying Confidence in the Predicted Reaction
Mechanism. The predicted active reaction mechanism for

Figure 1. Surface Pourbaix diagrams for (a) IrO2 and (b) RuO2. The bridge and cus sites of adsorption on rutile (110) oxides have been denoted by the
superscripts b and c, respectively. The black lines define the surface phase boundaries, and the stable surface states are depicted using the surface
intermediate species. The two Pourbaix diagrams have been constructed for the catalyst surface in equilibrium with Cl−, H+, and H2O at 298.15 K and
aCl+ = 1. For both IrO2 and RuO2, we observe that chlorine evolution is mediated using the reaction mechanism involving the stable intermediate ClOc.
The uncertainty in the surface phase predictions has been quantified using the c value, which we define as a metric for prediction confidence in the
context of Pourbaix diagrams. The c values of the associated predictions have been shown using a color map. Phase boundaries are characteristic of
regions with low c values, identifying electrochemical operating regimes where DFT predictions are subject to higher uncertainty. Surface Pourbaix
diagrams with associated c values for PtO2, TiO2, RhO2, and SnO2 are included in Figure S4 of the Supporting Information.
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chlorine evolution varies with materials as a function of the
chosen material descriptor, represented as mpred(ΔEO

c), which
maps any given value of ΔEO

c to the corresponding reaction
mechanism prediction from the set of possible mechanisms
denoted by {0, 1, 2, ..., i, ..., n}, where i denotes the ith
mechanism and i = 0 indicates no active mechanism. For
chlorine evolution on rutile oxides, n = 3, as there are three
distinct reaction mechanisms involved (refer to section 2.3). For
materials where the reaction mechanism is mediated through
ClOc, we assign mpred = 1. Similarly, when the mechanism is
mediated through Cl(Oc)2 and Cl

c, we assignmpred = 2 andmpred
= 3, respectively.
We quantify the confidence in the predicted reaction

mechanism as a function of ΔEO
c through a Bayesian error-

estimation approach similar to that outlined in section 2.2 for
computing the confidence in predicted surface states. At each
value ofΔEO

c, the mechanism prediction confidence cmpred
(ΔEO

c)
is calculated as the fraction of the ensemble of functionals that is
consistent with the predicted active mechanism based on the
best-fit functional, mpred

opt (ΔEO
c).

∑ δΔ = Δ − Δ
=

c E
N

m E m E( )
1

( ( ) ( ))m
n

N
n

O
ens 1

pred O pred
opt

Opred
c

ens

c c

(3)

where n denotes the nth functional, Nens is the total number of
functionals in the ensemble, and δ(x) denotes the Dirac delta
function.
In regimes where the cmpred

value is lower than 1, it becomes
important to determine whether the reaction mechanism
predicted by the majority of functionals agrees with the optimal
functional. This can be extended to determine a measure of
confidence in any given reaction mechanism or the ith reaction
mechanism mi being operative. For example, for the mechanism
mediated by ClOc, cmpred=1(ΔEO

c), determines the fraction of
functionals that predict that this mechanism is active. A
generalized relation can be given as

∑ δΔ = Δ −=
=

c E
N

m E i( )
1

( ( ) )m i
n

N
n

O
ens 1

pred Opred
c

ens

c

(4)

3. RESULTS AND DISCUSSION
3.1. Confidence in Stable Surface Phase Predictions. In

this section, we attempt to answer the important question of the
level of confidence in the predicted stable surface states for the
active rutile oxides, using the approach outlined in section 2.2.
Figure 1a depicts the surface phase diagram for IrO2 with the
associated c values indicating the likelihood of occurrence of the
predicted surface Pourbaix diagram. Although there exist some
differences in the positions of phase boundaries, we observe that
the predicted set of stable surface states is consistent with that
reported by Hansen et al.5 The quantification of confidence in
the predicted Pourbaix diagram allows us to identify regimes of
high confidence as well as those with high uncertainty.We notice
that regions predicted with low c values are close to surface phase
boundaries. This identifies electrochemical operating regimes
over which activity predictions based on the associated stable
phase are subject to high uncertainty and require higher fidelity
computations in conjunction with experimental validation.
A highly active catalyst for chlorine evolution entails ΔG ≈ 0

eV near U = 1.36 V for the formation of Clc. On IrO2, we find

that an active mechanism involving Cl adsorbed directly on an Ir
cation is not operative for chlorine evolution. However, we
observe that for a large range of pH (0 ≲ pH ≲ 6) ClOc on the
surface is thermodynamically stable for U > 1.5 V. This suggests
that chlorine evolution on IrO2 could be mediated by reaction
pathway I, as described in section 2.3, consistent with the
predictions using the RPBE XC.5

On RuO2 (Figure 1b), we find that the predicted stable
surface phases in this work compare well with those reported by
Hansen et al. at low potentials (U ≲ 1 V).5 In this range of
potentials, we observe a transition from only bridge sites being
covered with OH to the surface being completely covered by
OH with increasing U. At higher potentials (∼1 ≲ U ≲ 1.8 V),
we find that the intermediates OHb and OHc both oxidize to O.
A key difference that we find in our analysis relative to that
reported by Hansen et al. is that oxygen association at the cus
sites (2Oc → O2

cc) is endothermic by 0.82 eV. This implies that
2Oc is thermodynamically favorable relative to O2

cc, which gets
cascaded to the relative stability at higher potentials where we
find that (i) 1Oc 1OOHc is more stable than 1HOc 1O2

cc and (ii)
1Oc 1ClOc is more stable than Cl(Oc)2. This observation is
comparable to the GGA-level DFT studies of Exner et al.47 and
Wang et al.,48 who also predict that the O2

cc adsorbate on RuO2
should dissociate into 2Oc. We also observe that oxygen is the
most stable adsorbate with U ≈ 1.36 V; Cl does not adsorb
directly on the cus site for chlorine evolution to occur through
reaction pathway I. Therefore, we conclude from the phase
diagram that chlorine evolution on RuO2 could be mediated by
reaction pathway I. It is worth highlighting that using error
estimation capabilities we quantify the confidence in the
prediction that the oxygen association at the cus site is
endothermic, which is the origin of the differences we observe
relative to Hansen et al. We find that greater than 99.9% of the
ensemble is in agreement with the prediction that oxygen
association at the cus site is endothermic (refer to Figure S3 of
the Supporting Information). This strengthens the need for the c
value as a tool to quantify uncertainty in predictions of stable
surface phases. The Pourbaix diagrams for the other rutile oxides
are presented in the section 5 of the Supporting Information.

3.2. Scaling Relations and Generalized Surface
Pourbaix Diagram. The stable state of the surface S is a
function of pH, U, and the catalyst material Mcat. Pourbaix
diagrams represent the stable surface state, S(pH,U), on a
specific material. However, to analyze trends in the predicted
stable surface states across materials, a generalized Pourbaix
diagram that represents S(U,Mcat) for a fixed pH is required.
This provides a computationally inexpensive way to understand
the state of the catalyst surface without explicitly constructing
Pourbaix diagrams for each material.
Generalized Pourbaix diagrams are constructed using a

material descriptor to characterize the material Mcat, which is
often chosen to be the adsorption energy of an intermediate.
Hence, by invoking correlations (scaling relationships) between
the adsorption energetics of various intermediates,5 we
construct a single descriptor model to predict stable surface
state across materials. The adsorption energies of various
intermediates (Cl, OH, ClO, O2Cl, and O2) at the cus site of the
chosen oxides follow a linear relationship when they are plotted
against the adsorption energy of oxygen at the cus site (using the
BEEF-vdW optimal functional), as shown in Figure 2. This
suggests that oxygen adsorption energy can be the continuous
material descriptor choice for the reactivity of oxides.5,49ΔEO

c is
chosen as the material descriptor, since it allows a greater
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resolution of material candidates, which implies a larger
distinguishability of materials24 on the descriptor scale as can
be seen on the basis of the slopes (<1) of scaling relations
defined relative to the chosen material descriptor in Figure 2. An
alternate approach could be to choose the descriptor that
maximizes prediction efficiency as shown in our earlier work.24

For this work, we proceed with the choice of Oc as the descriptor
in order to perform comparison with the results of Hansen et al.5

In this representation, we fix the pH and Cl− concentration (pH
0, aCl− = 1), but their effects can be easily incorporated by
changing the free energies of the various intermediate species
accordingly. The species predicted in the generalized surface
phase diagram as shown in Figure 3 are consistent with those
predicted by Hansen et al.,5 although the positions of phase
boundaries differ slightly. It is worth noting that, in the weaker
binding limit, i.e., ΔEOc > 3.6 eV (determined using the best-fit
functional scaling relations), oxygen association at the cus site
becomes exothermic, leading to the reaction O2

cc → O2(g) + 2 c
becoming spontaneous. Therefore, the formation of the phases
ClOc and Cl(Oc)2 is unfavorable on catalyst materials withΔEO

c

> 3.6 eV, and we only consider OHc, Clc, and the clean surface as
the possible stable surfaces states in this regime.

In the single-descriptor picture, quantifying uncertainty in
predictions becomes highly crucial, since the uncertainty in DFT
calculations is coupled with that in the scaling relations. We
incorporate the uncertainty in scaling relations to quantify the
confidence in predicted stable surface species. We generate an
ensemble of predicted adsorption energies using the BEEF-vdW
functional, which results in an ensemble of scaling relations for
each adsorbate. Therefore, for each of the generated GGA-level
XC, we can create a unique generalized Pourbaix diagram. We
calculate the c value of our predictions by finding the fraction of
the functionals in agreement with the hypothesis corresponding
to the BEEF-vdW best-fit functional at given values of U and
ΔEO

c as described in section 2.2. We find that the c value (Figure
3) of the predictions at the phase boundaries is the lowest,
suggesting that a precise determination of stablemolecular states
at these phase boundaries is computationally challenging. Lower
c values at phase boundaries originate from the uncertainty in
scaling relationship(s) that are required to describe the phase
boundary location. For instance, the phase boundary between
the stable surface states Oc and ClOc determined by ΔG(ClOc)
− ΔG(Oc) − eU = 0 requires the scaling relation between
ΔG(ClOc) and ΔG(Oc) to be expressed in terms of the chosen
material descriptor. Similarly, the relatively higher uncertainty
observed at the phase boundary between the stable surfaces
states ClOc and (Oc)2Cl can be explained on the basis of the fact
that it requires propagation of uncertainty from two scaling
relations involving ΔG(Oc). Section 7 of the Supporting
Information provides a metric to quantify the likelihood of a
certain surface state being the most stable by taking into account
all of the members of the ensemble of functionals. It is worth
pointing out that, in this quantifying propagation formalism,
although the discrepancy error of the scaling relations is not
explicitly accounted for in this work, it is expected that the
considered ensemble of scaling relations corresponding to the
ensemble of functionals partially represents the distribution that
would arise from a linear least-squares minimization for the fit
with a tolerance.
For reducing uncertainty in predictions, surface phase

diagrams with U and pH need to be constructed for each

Figure 2. Adsorption free energies of various intermediates plotted
against the adsorption free energy of oxygen on the cus site of rutile
oxides to show the scaling relations between various intermediates. The
figure represents the adsorption energy of Cl (black) at the cus site:
ΔECl

c = 0.34ΔEO
c − 1.62 eV; adsorption energy of OH (green) at the

cus siteΔEHO
c = 0.45ΔEOc− 0.56 eV; adsorption energy of ClO (red) at

the cus site ΔEClO
c = 0.4ΔEO

c + 0.81; adsorption energy of (Oc)2Cl
(yellow) at the cus site ΔECl(Oc

)2 = 0.41ΔEOc + 2.8 eV; adsorption

energy of O2
cc (purple) at the cus siteΔEO2

cc = 0.48ΔEOc + 3.03 eV. The
symbols represent the nature of the site neighboring the adsorption site:
(■) vacant neighboring cus site; (●) Oc neighbor; (▲) Clc neighbor;
(▼) ClOc neighbor. The symbol▶ represents the average adsorption
energy of the intermediate species for the fully covered surface, and ⧫

represents the adsorption of energy of (Oc)2Cl (yellow) and O2
cc

(purple) plotted against the average adsorption energy of O for the
fully covered surface. The fits here describe the scaling relations
corresponding to the BEEF-vdW best-fit functional. The uncertainty in
these fits is propagated through the outlined framework to quantify the
confidence in the predicted generalized Pourbaix diagram (refer to
Figure S5 in the Supporting Information).

Figure 3. Generalized Pourbaix diagram showing the most stable
surface at pH 0 and aCl− = 1 as a function of potential and ΔEOc , the
material descriptor. The black lines represent the phase boundaries of
the generalized Pourbaix diagram constructed using the scaling
relations obtained from the BEEF-vdW optimal functional. By
propagating the uncertainty in the scaling relations, we quantify the
confidence in the predictions as shown in the color map. Regions of the
plot with low c value are correlated with the positions of surface phase
boundaries, similar to that observed for the Pourbaix diagrams on
individual rutile oxides.
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given value of ΔEO
c with the associated c values. However, the

identification of reaction mechanism trends is not possible with
this approach. The generalized Pourbaix diagram with
associated c values constructed using the outlined approach
maximizes identifiability of trends while retaining the ability to
quantify uncertainty in the predictions.
Our analysis suggests the general trend that as the Oc binding

strength on materials decreases (0 < ΔEO
c < 5 eV), the stable

surface state transitions from being completely covered with Oc

to a clean surface. Within this range, we limit our discussions to
the chlorine-containing species relevant for identifying the
dominant reaction mechanisms. For stronger binding materials,
we observe that the Cl− anion is energetically more favorable as
an adsorbed species on Oc (as ClOc) than on the cation of the
clean surface. On relatively more weakly binding materials, we
find that the Cl− anion binds the surface as (Oc)2Cl, which can
be explained on the basis of the stability of (Oc)2 relative to 2O

c.
For materials with weak binding (ΔEO

c > 3.6 eV), oxygen can no
longer adsorb on the cus site and Cl− directly adsorbs as Clc on
the catalyst.
3.3. Limiting Potential and Expected Activity Pre-

dictions. Computational screening for active materials requires
the understanding of trends in catalytic activity as a function of
the chosen material descriptor. For a given material, the activity
is governed by the operative reaction mechanism, which is
dictated by the stable intermediate species on the surface given
by the generalized surface Pourbaix diagram (Figure 3).
Invoking linear scaling relationships between the adsorption
free energy of oxygen and the adsorption free energies of all the
other intermediates allows us to represent both the limiting
potential for each mechanism and the stable phase space
(generalized Pourbaix diagram) as a function of the same
variablesU and ΔEO

c (Figure 4). Overlaying the generalized
surface phase diagram with the activity volcano is crucial to
obtain the generalized activity volcano (Figure 4) by accounting
for the appropriate active reaction mechanism and active site.
This results in the activity being governed by reaction
mechanism I for strong-binding materials (ΔEO

c< ≲ 2.1 eV),
by reaction mechanism I for moderate-binding materials (2.1 ≲
ΔEO

c≲ 3.6 eV), and by reactionmechanism III for weak-binding
materials (ΔEO

c ≳ 3.6 eV).
Such single-descriptor activity-prediction models have been

successful in determining promising catalysts for various
electrochemical reactions including hydrogen evolution,34,46,50

oxygen reduction,45,51 hydrogen peroxide synthesis,52−54 and
oxygen evolution.27,55 Alongside, we address an associated
question of the level of confidence in activity predictions and
identify material descriptor regimes where the prediction
uncertainty is low. We incorporate the uncertainty in scaling
relationships and use a Bayesian error estimation approach using
the BEEF-vdW XC to quantify the confidence in the predictions
of reaction mechanisms and thereby the activity for chlorine
evolution. The XC functional generates an ensemble of
adsorption energies, as shown in Figure S1, that results in an
ensemble of scaling relations for each of the intermediates.
Hence, each GGA-level XC functional generated within the
ensemble leads to a unique generalized Pourbaix diagram and an
associated generalized activity volcano. At a given ΔEO

c, the
specific reaction mechanism active for chlorine evolution which
governs the limiting potential can hence be determined by the
associated stable intermediate species through the generalized
Pourbaix diagram. Therefore, for a given value of the material
descriptor,ΔEO

c, we can now find a distribution of the predicted

limiting potentials corresponding to the family of functionals.
This can be used to construct a probability map of the limiting
potential for a range of descriptor values, as can be seen in Figure
4. We report UEL(ΔEO

c), the expectation value of the limiting
potential, which is computed as the probability-weighted
average (refer to section 2.3) of the UL(ΔEO

c) value.23,24

We observe that the UEL curve overlaps with the UL curve
away from the peaks of the volcanoes owing to low prediction
uncertainty. Similar observations have been made for hydrogen
evolution, oxygen reduction, and oxygen evolution reactions.24

It is worth pointing out that the UEL predictions based on the
activity volcano for the reaction pathway mediated by Cl(Oc)2
and O2

cc are relatively much higher than the UL values. This can
be rationalized partially on the basis of the fact that the activity
relationship for this pathway alone involves uncertainty
incorporation from two scaling relations: (ΔEO2

cc and ΔECl(O
c
)2

as functions ofΔEO
c). A similar observation was reported for the

predicted activity of transition metals for the oxygen reduction
reaction using ΔEO* as the descriptor.24 Additional factors that
lower the prediction confidence in this regime are the low
associated c values (≲0.55) for regions in the generalized surface
Pourbaix diagram where Cl(Oc)2 and O2

cc are predicted to be the
most stable surface state, as can be seen in Figure 3. Hence, DFT
predictions of chlorine evolution activity forΔEO

c approximately
in the range 2.1−3.6 eV are subject to higher uncertainty. We
argue thatUEL(ΔEO

c) is a more relevant activity measure since it
explicitly incorporates DFT uncertainty.

Figure 4. Black dotted lines representing the activity volcano
relationships for the possible reaction pathways involving ClOc,
Cl(Oc)2, and Clc (left to right) as a function of ΔEOc, predicted on
the basis of the best-fit functional overlaid on the generalized Pourbaix
diagram. The stable surface phases are labeled in gray, and the gray lines
indicate surface phase boundaries. The bold black lines show the
generalized limiting potential relationship (UL) as a function of ΔEOc

and are constructed by taking into account the stability of the
underlying reaction intermediates using the BEEF-vdW optimal
functional scaling relations. The color map represents the dimension-
less probability distribution of the limiting potential quantified using
the ensemble of functionals within the BEEF-vdW XC functional.24

The red line shows UEL(ΔEOc), the expectation value of the limiting
potentials which is computed as the probability-weighted average of the
UL distribution at each descriptor value. We observe a large deviation of
UEL from the UL for 2.1 ≲ ΔEO

c ≲ 3.6 eV, where the reaction
mechanism mediated by (Oc)2Cl is predicted to be active for chlorine
evolution. We attribute this difference to the fact that the construction
of the activity volcano for this reaction pathway involves two scaling
relations, which increase the uncertainty in the predictions.
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3.4. Quantifying Confidence in the Predicted Active
Reaction Pathway. In reaction schemes involving multiple
pathways, an equally important question involves identifying the
dominant reaction pathway as a function of the material
descriptor. Here, we address the question of propagating the
uncertainty associated with adsorption energies and scaling
relations to quantify the confidence in predicted reaction
pathway. This allows us to predict the active reactionmechanism
for chlorine evolution for any new catalyst surface, to a first
approximation, through the adsorption free energy of oxygen on
the oxide (ΔEO

c) as the descriptor.We determine the confidence
in the predicted reaction mechanism through the metric defined
in section 2.4, cmpred

, as a function of ΔEO
c. cmpred

(ΔEO
c) is

calculated on the basis of the level of agreement between the
predicted reaction mechanism(s) by the ensemble of GGA-level
functionals and the BEEF-vdW optimal functional. We define
another useful quantity, cmpred=i for the ith reaction mechanism,

which becomes especially important in regimes where the cmpred

value is less than 1, where different functionals identify different
reaction mechanisms to be active. cmpred=i(ΔEO

c) provides a
measure of the confidence for the ith reaction mechanism being
active (refer to eq 4).
On the basis of the definition of cmpred=i we highlight a property

of interest: the sum of cmpred=i (i = 1, 2, ..., nmech) for any given
value of the descriptor ΔEO

c is equal to 1. This implies that the
confidence values corresponding to all mechanisms cannot
simultaneously increase or decrease in anyΔEO

c range. The rule
can be expressed as
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We observe (Figure 5) that for materials with strong oxygen
binding (0≲ΔEO

c ≲ 2.1 eV), the majority of functionals predict
that chlorine evolution occurs by the reaction mechanism
mediated by ClOc (cmpred

≈ cmpred=1 ≈ 1). In the range of materials
that moderately bind oxygen on the cus cite (2.1 ≲ ΔEO

c ≲ 3.6
eV), we observe that there exists a lower degree of agreement
between the functionals with respect to the predicted reaction
mechanisms, leading to relatively low cmpred

values, although most
functionals are in agreement with the optimal around ΔEO

c ≈ 3
eV. For materials that bind oxygen weakly on the cus site (ΔEO

c

> 3.6 eV), it is thermodynamically favorable to have the chlorine
intermediate directly adsorbed on the cus site (as Clc) rather
than on oxygen (as either ClOc or (O2

c)Cl). In this regime, we
find that the majority of functionals agree with the BEEF-vdW
optimal functional, and chlorine evolution is mediated with a
high certainty by the reaction pathway mediated by Clc. We
show that materials RuO2 and IrO2 that form dimensionally
stable anodes (DSA) proceed through the ClOc-mediated
pathway with high certainty (c value = 1). TiO2 proceeds
through the pathway mediated by Clc with high certainty (c
value = 0.94), while PtO2 proceeds through the pathway
mediated by Cl(Oc)2 with a c value of 0.61.
It is worth noting that different functionals may identify the

same reaction pathway as the dominant one. However, they may
result in vastly different limiting potentials. This raises an
important question on the confidence associated with
identifying reaction mechanisms versus determining activity

values. This can be analyzed through an example case of RuO2,
whereΔEO

c = 1.53 eV. In this case, all the functionals identify the
ClOc-mediated pathway to be the active one. However, the
functionals identify vastly different limiting potentials, as shown
in Figure S7. This leads to an important conclusion that the
confidence in utilizing DFT calculations for the classification
problem of identifying the dominant reaction mechanism is
much better than the prediction problem of determining the
catalytic activity. This has an important implication more
broadly that DFT-identified reaction pathways are likely to be
much more robust than the DFT-predicted catalytic activities.

4. CONCLUSIONS
We demonstrate an approach to quantify the confidence
associated with predictions of the activity-governing reaction
mechanism by systematically accounting for the uncertainty
derived from the DFT-calculated adsorption energetics. By
using the c value in the context of Pourbaix diagrams as a metric
to quantify the level of confidence in surface state predictions,
we highlight and rationalize the origin of higher uncertainty
close to phase boundaries. We quantitatively suggest with high
confidence that chlorine evolution on RuO2 and IrO2 occurs
through the reaction mechanism mediated by ClOc. To analyze
trends in the predicted stable surface states across materials, we
construct a generalized Pourbaix diagram by invoking scaling
relations between the surface intermediate species. We choose
ΔEO

c as the material descriptor, since it allows greater resolution
of material candidates on the descriptor scale. By overlaying the
generalized surface phase diagramwith the activity relationships,
we construct the generalized activity volcano by accounting for
the appropriate operative reaction mechanism. Incorporating
the uncertainty in the scaling relations, we report the prediction
confidence in the generalized Pourbaix diagram and find the

Figure 5. Quantifying the confidence in the predicted reaction
mechanism cmpred

as a function of the material descriptor (black dotted
line). The bold lines represent the confidence in the reaction
mechanisms mediated by the stable intermediates ClOc (cmpred=1),

(Oc)2Cl (cmpred=2), and Clc (cmpred=3). The colored regions in the plot
represent the reaction mechanism predicted by the BEEF-vdW (best-
fit) optimal functional. We observe relatively low cmpred

values for the
reaction mechanism mediated by intermediate (Oc)2Cl in the material
descriptor range 2.1 ≲ ΔEOc ≲ 3.6 eV, implying a higher degree of
disagreement between the GGA-level functionals within the ensemble
of functionals.
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distribution of the limiting potential as a function of the material
descriptor.We compute the expected activity,UEL(ΔEO

c), which
we argue is a more relevant activity measure since it incorporates
DFT uncertainty. Furthermore, we quantify the robustness of
the prediction of the likely operative reaction mechanism as a
function of the chosen material descriptor, which we believe is
crucial for improving the accuracy of activity predictions in
descriptor-based catalyst screening approaches. It is worth
highlighting that while this work focuses on the robustness of
predictions based on the uncertainty within GGA-level func-
tionals, an important secondary question that remains to be
answered is the influence of higher-order functionals on the
confidence of predictions. Finally, we find that materials which
form dimensionally stable anodes (DSA), RuO2 and IrO2,
proceed through the ClOc-mediated pathway with very high
confidence (c value = 1). TiO2 proceeds through the Clc-
mediated pathway with high confidence (c value = 0.94), while
PtO2 proceeds through the Cl(O

c)2-mediated pathway with a c
value of 0.61. Although this work focuses on the mechanisms by
which chlorine evolution can occur, the presented approach can
readily be extended not only to other multielectron reactions
involving multiple reaction pathways but also to reactions where
the selectivity of products is critical.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acscatal.8b01432.

Computational details, adsorption energetics of all the
considered surface states, scaling relationships, Pourbaix
diagram construction, and uncertainty propagation
framework for chlorine evolution activity (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail for V.V.: venkvis@cmu.edu.
ORCID
Vaidish Sumaria: 0000-0002-0263-749X
Dilip Krishnamurthy: 0000-0001-8231-5492
Venkatasubramanian Viswanathan: 0000-0003-1060-5495
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Dr. Heine A. Hansen for insightful
discussions and for sharing structure files. D.K. and V.V.
gratefully acknowledge funding support from the National
Science Foundation under award CBET-1554273. V.S. and V.V.
acknowledge support from the Scott Institute for Energy
Innovation at Carnegie Mellon University.

■ REFERENCES
(1) Bockris, J. O. J. O.; Khan, S. U. M. Surface Electrochemistry: A
Molecular Level Approach; Plenum: New York, 1993; pp 211−405.
(2) Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. Surface Pourbaix
Diagrams and Oxygen Reduction Activity of Pt, Ag and Ni(111)
Surfaces Studied by DFT. Phys. Chem. Chem. Phys. 2008, 10, 3722−
3730.
(3) Yan, B.; Krishnamurthy, D.; Hendon, C. H.; Deshpande, S.;
Surendranath, Y.; Viswanathan, V. Surface Restructuring of Nickel
Sulfide Generates Optimally Coordinated Active Sites for Oxygen
Reduction Catalysis. Joule 2017, 1, 600−612.

(4) Bajdich,M.; García-Mota,M.; Vojvodic, A.; Nørskov, J. K.; Bell, A.
T. Theoretical Investigation of the Activity of Cobalt Oxides for the
Electrochemical Oxidation of Water. J. Am. Chem. Soc. 2013, 135,
13521−13530.
(5) Hansen, H. A.; Man, I. C.; Studt, F.; Abild-Pedersen, F.; Bligaard,
T.; Rossmeisl, J. Electrochemical Chlorine Evolution at Rutile Oxide
(110) Surfaces. Phys. Chem. Chem. Phys. 2010, 12, 283−290.
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