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ABSTRACT: Density functional theory (DFT) calculations are being routinely used to
identify new material candidates that approach activity near fundamental limits imposed
by thermodynamics or scaling relations. DFT calculations are associated with inherent
uncertainty, which limits the ability to delineate materials (distinguishability) that possess
high activity. Development of error-estimation capabilities in DFT has enabled
uncertainty propagation through activity-prediction models. In this work, we demonstrate
an approach to propagating uncertainty through thermodynamic activity models leading
to a probability distribution of the computed activity and thereby its expectation value. A
new metric, prediction efficiency, is defined, which provides a quantitative measure of the
ability to distinguish activity of materials and can be used to identify the optimal
descriptor(s) ΔGopt. We demonstrate the framework for four important electrochemical
reactions: hydrogen evolution, chlorine evolution, oxygen reduction and oxygen
evolution. Future studies could utilize expected activity and prediction efficiency to
significantly improve the prediction accuracy of highly active material candidates.

High-throughput material screening in heterogeneous
electrocatalysis has been enabled by advances in density

functional theory simulations.1 Electrocatalysis has seen
numerous success stories for theory-guided material design
through the use of descriptor-based searchers in hydrogen
evolution,2−4 oxygen reduction,5,6 hydrogen peroxide syn-
thesis7−9 and oxygen evolution.10,11 Often, the existence of
scaling relations allows multiple descriptor choices, for e.g.,
adsorption free energy of O*12 or OH*6,13 for the oxygen
reduction reaction (ORR). Given the importance of the activity
descriptor(s), which are currently determined based on a
mechanistic understanding, a quantitative theoretical basis for
the selection of descriptors is necessary. In parallel, an emergent
frontier in DFT is the incorporation of uncertainty associated
with predictions. The development of Bayesian error estimation
functional (BEEF) has brought error-estimation capabilities to
DFT simulations by generating an ensemble of functionals to
map known uncertainties in the training data sets of the XC
functionals.14 In this work, we incorporate uncertainty by
treating the descriptor as a probabilistic variable, which allows
us to compute the probability density function (PDF) of the
activity through the corresponding activity-prediction model.
Based on the expectation value of the activity, we define
prediction efficiency to quantify the ability of a given choice of
descriptor to distinguish highly active material candidates. We
use prediction efficiency to choose the ΔGopt for (i) hydrogen
evolution reaction, (ii) chlorine evolution reaction, (iii) oxygen
reduction reaction (2e− and 4e−) and (iv) oxygen evolution
reaction.

Let us consider the descriptor to be a normal distribution,
μ σ∼X ( , )2 , with the standard Gaussian probability density

function, px(x | μ,σ
2), and we will revisit this assumption in the

next section. The activity, now a probabilistic quantity, is given
by A = f(X). The associated PDF, p ̂a(a) can be written as pâ(a)
= ∫ −∞

+∞px(x)δ( f(x) − a) dx. The normalized PDF, pa(a), can be
obtained subsequently, and the expectation value of the activity
can be obtained as the probability density weighted average.
E[A] = ∫ amin

amaxapa(a) da. In order to build intuition about the
properties of the expected activity, we prove the following:
Theorem 1: As σ → 0 for the descriptor PDF, the expected

value of the activity, E[A] → f(μ). Given σ → 0, it implies that
p(x) = δ(x−μ).
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Theorem 2: When the functional relationship between the
descriptor and the activity, A = f(X), is concave, f(μ) > E[A]. A
concave function, f(x), obeys f(∑αixi) > ∑(αi f(xi)) for ∑αi =
1. Choosing αi such that αi = px(x),
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since, by definition,

∑ ∑μ= =px pf x E Aand ( ( )) [ ]i i i i
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Theorem 3: At the maximal functional value, amax, E[A] <
amax ∀ f(X). By definition, f(x) < amax ∀ x. Multiplying by a
positive quantity, px(xi), on both sides,

⇒ <p x f x p x a( ) ( ) ( )x i i x i max

Now, summing this up for all i,

∑ ∑⇒ <p x f x p x a( ) ( ) ( )x i i x i max

Since amax does not depend on i, ⇒E[A] < amax.
In order to utilize these theorems, the descriptor PDF needs

to be determined, which is enabled by the recent development
of the BEEF to the XC functionals.14 We demonstrate the use
of error-estimation capabilities within the BEEF-vdW XC
functional for obtaining the PDFs of descriptors through an

ensemble of functionals. This approach has been utilized to
quantify the uncertainty associated with reaction energies,15,16

mechanical properties,17 and magnetic ground states.18 The
details of the performed DFT computation are included in the
Supporting Information. With the descriptor PDF determined,
a key question that arises is how the predictability with the
associated uncertainty compares to the case with no
uncertainty, which we term as oracle (perfect) computation.
Distinguishability can be understood as the ability to delineate
the activity difference of different materials. Typically, in
electrocatalysis, we are interested in identifying materials that
possess a certain threshold activity, which in computational
electrocatalysis is typically the threshold limiting potential, UT.
This leads to a finite interval of the descriptor values of interest.
For this range of descriptor values, the activity with perfect
computation (no uncertainty) in the descriptor space maps to
an interval [UT, max(UL)], while that with uncertainty in the
descriptor maps to [UT, max(UEL)], where UEL is the
expectation value of the limiting potential. An obvious approach
to delineate materials is directly quantified by the length of this
interval. A mathematically precise definition of the ability to
distinguish materials is the Lebesgue measure of the interval,

Figure 1. (a) Exchange current density prediction with one standard deviation (shaded regions) from the kinetic model (black) based on the
computed hydrogen binding energy (referenced to rhodium) and the experimentally measured activity (red dots) as compiled by Nørskov et al.4 (b)
Probability map of the activity as a function of the expectation value of the hydrogen adsorption energy computed using the outlined probabilistic
uncertainty propagation framework outlined. The red line represents the expected activity, depicting reduced distinguishability of materials along the
activity axis. The area between the red and black lines represents the region of computational uncertainty, implying that finding candidates in this
region (highly active candidates) requires higher-order computation coupled with experiments. (c) Limiting potential as a function of the free energy
of chlorine adsorption referenced to IrO2 to minimize systematic errors in DFT. The solid line represents the predicted value from the volcano
relationship, whereas the colored regions represent uncertainty (1-σ and 2-σ regions). (d) Probability distribution of the limiting potential plotted
versus the expectation value of the free energy of chlorine adsorption.
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which can be used readily for predicting more than one
property of interest. Based on this, we define prediction
efficiency to be a quantity given by the ratio of the
distinguishability with uncertainty to the distinguishability
with perfect computation, i.e., oracle computation. The
prediction efficiency is expressed as

η
λ
λ

=U
U U
U U

( )
([ , max( )])
([ , max( )])pred T

T EL

T L

where, λ is the Lebesgue measure of the interval, which is its
length in one-dimension. We can build intuition on prediction
efficiency based on the following properties. With this
definition, as σ → 0 for the descriptor PDF, the prediction
efficiency ηpred → 1. If f is concave, based on Theorem 2, the
prediction efficiency, ηpred < 1 for σ ≠ 0. As we will show later,
the prediction efficiency can be used to (i) quantify the
efficiency of a particular descriptor for an electrocatalytic
reaction scheme, and (ii) quantitatively compare predictability
between different electrochemical reactions.
The probabilistic approach is first illustrated for hydrogen

evolution reaction owing to a unique atomic-scale descriptor for
its catalytic activity.19 The HER has gained renewed interest in
solar water-splitting for hydrogen production,20,21 requiring
computational-screening approaches for identifying active
catalysts. For prediction of HER activity before DFT-enabled
computations, Parsons identified through a mechanistic under-
standing that the descriptor is the free energy of hydrogen
adsorption.19 However, due to the then calorimetric limitations,
for decades the descriptor was approximated to be the metal-
hydride bond strength.19 With the development of DFT, it has
been made possible to compute the hydrogen binding energy
(ΔGH*) in agreement with experimental measurements, which
has been used in numerous successful screening approaches.2−4

In this work, we use this descriptor to demonstrate our
probabilistic formalism for activity prediction by following the
Volmer−Heyrovsky reaction mechanism.22 In this mechanism,
the first step is the activation of protons as adsorbed hydrogen,
and a subsequent step is a concerted proton−electron addition
to evolve hydrogen. The descriptor, the hydrogen binding
energy, and the activity can be linked through a simplified
kinetic model4 as

= Δ = − + |Δ |* *
−i f G ek G kT( ) (1 exp( / ))0 H 0 H

1

where the pre-exponential factor is obtained by fitting to
experiments. To demonstrate the probabilistic approach, we
consider a range of transition metals that are known to be active
hydrogen-evolution catalysts and the predicted exchange
current density is shown in Figure 1a. Within our
uncertainty-propagation framework, as presented in an earlier
work we approximate the descriptor uncertainty to be uniform
and is given by the standard deviation of the combined
distribution of the descriptor, σH, from all the metals.13 We
treat the descriptor as a Gaussian probabilistic variable,

μ σ∼X ( , )H
2 , with an associated PDF, px(x|μ,σH

2 ). To
propagate the descriptor uncertainty, we map this PDF through
the kinetic model onto the exchange current density axis, and
the activity PDF can be expressed as

∫ δ̂ = −
−∞

+∞
p i p x f x i x( ) ( ) ( ( ) ) di x0 0

0

which is normalized to obtain pi0(i0), the activity PDF. Figure
1b shows the PDF map of the activity as a function of μ, the
mean value of the descriptor PDF. From the activity PDF, the
expectation value of activity is obtained using the normalized
PDF p (i0) as

∫=
−∞

i i p i i( ) dE

i

i0 0 0 0
0max

0

The red curve in Figure 1b represents the expected-activity
curve and the distinguishability of activity between candidates is
the lowest near the top of the volcano. This implies that
through a purely computational approach, with the current
DFT accuracy, the predicted activity of candidates like Pt, Pd,
and Rh are indistinguishable. Therefore, efforts with a quest to
identify catalysts in acidic media better than the archetypical
HER catalyst, platinum, must be cautiously designed within
purely computationally driven approaches.
We extend the framework to the chlorine evolution reaction

(ClER), which is one of the largest technological applications of
electrochemistry. It occurs as a two-electron process through a
few possible pathways with a well-studied descriptor for its
catalytic activity. While the ClER is a hugely important reaction,
the search for effective catalysts has largely been driven by
empiricism. Through an empirical approach, the development
of Dimensionally Stable Anodes by Beer23 forms a milestone
for the chlor-alkali industry demonstrating a synergistic
enhancement of stability and activity over a broad range of
operating conditions.24 The mechanistic understanding of the
ClER was largely driven by experimental work by Krishtalik et
al.25 However, oxygen evolution tends to occur as a parasitic
reaction, especially at high current densities, since the
equilibrium potentials for chlorine evolution and oxygen
evolution are close and rutile oxides catalyze both reactions.26

Undoubtedly, the possible competing pathways affect the
specific activity, however, we adopt a simplistic mechanism to
demonstrate our probabilistic framework by following the
Volmer−Heryrovski mechanism. Since the mechanism involves
a single intermediate, the chlorine adsorption energy forms the
descriptor for activity and it is possible to attain the equilibrium
potential. The limiting potential can be determined26 as UL =
f(ΔGCl*) = 1.36 + |ΔGCl*| V. We consider rutile oxides, which
are reported to be active chlorine-evolution catalysts (Figure
1c). We follow a similar approach to that demonstrated for
HER, to propagate the descriptor uncertainty (σCl) to the
activity (Figure 1d), where the red curve represents the
expected activity. The distinguishability of activity between
candidates with descriptor values near the apex of the volcano is
the lowest, as implied in theorem 2. The reduced distinguish-
ability can be attributed solely to the descriptor uncertainty
since there exists only a single intermediate (descriptor), which
also results in a high prediction efficiency for ClER relative to
reactions with multiple descriptor choices, as we demonstrate
later (Figure 4). We observe from the prediction efficiency
curve that for overpotentials below 0.9 V, the prediction
efficiency is zero, implying that higher-order DFT methods are
necessary for screening approaches to identify candidate
catalysts with very low overpotentials.
The fundamental understanding of the ORR has largely been

through the surface science approach to electrocatalysis,27−36

which relies on surface analytical tools33,36−40 complemented
by first-principles calculations.12,41−46 For computational
screening, multiple choices of the descriptor for ORR activity
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have been used based on free energy scaling between
intermediates.13,47 Greeley et al. showed that specific Pt-based
binary alloys exceed the activity of Pt by using the free energy
of adsorbed oxygen as the descriptor.47 By contrast, Ifan et al.
identified Pt5La to have significantly higher activity than Pt by
using the free energy of OH* as the descriptor.48 A rational
approach to choosing the right descriptor for the ORR is not
present and in this work, we fill this gap with conclusions,
similar to that shown in an earlier work.13

We follow the associative mechanism for the 4e− reduction,12

and the electrocatalytic activity for ORR is determined by the
free energies of adsorbed OOH*, OH* and O*. However, the
presence of scaling49 between these intermediates allows us to
use a single descriptor for the activity.10,48,50 We apply the
probabilistic approach by considering various metallic facets
and propagate the uncertainty in the descriptor and scaling
relations to predict ORR activity. Scaling relations between the
adsorbates (Figure 2a and Figure S6) allow us to describe the
limiting potential as a function of one descriptor (Figure 2b).
The slopes of the scaling relations have been fixed in
accordance with bond-order conservation principles and the
intercept uncertainty is obtained using Bayesian error
estimation within the BEEF-vdW XC functional. Let us begin
with the case of the free energy of OH*, GOH*, being the
descriptor, where the limiting potential is given by UL =

f(ΔGOH*) = min(ΔGOH*, 4.92 − ΔGOOH*). Hence, using the
scaling relations, the limiting potential is expressed as UL =
min(ΔGOH*, 4.92 − (3.11 + ΔGOH*)) V. The descriptor
uncertainty is approximated based on the combined distribu-
tion of the surfaces explored.13 The uncertainty in the scaling
relation is incorporated by considering an ensemble of activity
volcano relationships mapped from the ensemble of scaling
relation intercepts. For each member of the ensemble of
volcano relationships, the descriptor uncertainty is propagated.
This allows us to compute the expected activity for each
ensemble member and a probability-weighted average gives the
activity PDF and the expected limiting potential (Figure 2c). In
a similar manner, we construct the PDF maps of ORR activity
and the corresponding expected limiting potentials using
ΔGOH* and ΔGO* as the descriptors (Figure 2d,e). For the
three descriptors, we can compare the predictability of activity
based on the prediction efficiency. We find that the prediction

efficiency follows the trend, ηpred
OH* > ηpred

OOH* > ηpred
O* , identifying

that ΔGOH* is the descriptor for maximal predictability. It is
worth highlighting that the use of ΔGO* as the descriptor uses
two scaling relations, while ΔGOH* and ΔGOOH* use only one,
leading to improved prediction efficiency. We demonstrate the
ΔGopt choice through a similar approach for 2e− oxygen
reduction in the Supporting Information (section 5.5).

Figure 2. (a) Computed scaling relation between adsorption energies of the intermediates, OH* and OOH*. The red dots represent DFT-calculated
free energies, and the yellow dots represent those computed from the family of functionals within BEEF-vdW, enabling error estimation. The two
shaded regions represent one and two standard deviations in the scaling intercept. Similar scaling is found between the adsorption energies of other
oxygen intermediates (shown in the Supporting Information). (b) Activity volcano for 4e− ORR showing the experimentally measured limiting
potentials plotted against the DFT-calculated adsorption free energy of OH* relative to Pt(111). (c) Probabilistic activity volcano using ΔGOH*,
which we identify as the descriptor that maximizes the prediction efficiency. (d) Prediction efficiency as a function of the activity interval of interest, |
UL,max − UT|. It can be seen that ΔGOH* is the descriptor that maximizes predictability for 4e− ORR.
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We show the effectiveness of the probabilistic approach by
also extending to the oxygen evolution reaction (OER), which
is carried out under harsh oxidizing conditions and is a crucial
process for the solar fuel generation.20 The foundational
understanding of the OER on metal oxides has been built
largely through experimental measurements and by empirically
correlating them to the enthalpy of lower to higher oxide
transition.24,51 The insights developed using this approach have
been limited due to the inability to accurately measure
chemisorption energies. This is due to the difficulty associated
with preparing well-ordered single-crystalline oxides and the
limited electrical conductivity, making them challenging for
surface characterization.52

On the theoretical front, progress in understanding electro-
catalysis has been limited by the accuracy of DFT in describing
correlation in transition metal oxides.53,54 Using appropriate
reference schemes, it has been shown that the formation
energies of rutile oxides can be described well using DFT at the
GGA level.55 Man et al. explored trends in reactivity for oxygen
evolution on rutile and perovskite surfaces, showing the
existence of scaling relations.10 Based on this analysis, they
argued that ΔG = ΔGO* − ΔGOH* can be used as a descriptor
for predicting activity. Subsequently, two independent
descriptors were used to predict the overpotential.56 Despite
these advances, the selection of the right descriptor for oxygen
evolution remains elusive. We fill this gap by exploring the
associative mechanism for oxygen evolution on rutile oxide

(110) surfaces. The OER activity is determined by the
adsorption energy of the reaction intermediates. We find that
the scaling between the adsorption energies of OOH* and
OH* has a slope close to 1 and the intercept is found to be 3.05
(Figure 3a).10,57 The variation in the limiting-potential is
therefore determined by ΔGO*. Hence, we can use ΔG2 =
(ΔGO* − ΔGOH*) or ΔG3 = (ΔGOOH* − ΔGO*) as a
descriptor. This implies that UL = max(ΔG2, 3.05 − ΔG2) =
max(ΔG3, 3.05 − ΔG3). Following a similar approach to ORR,
we show a probabilistic activity plot as a function of descriptors,
E[ΔG2] and E[ΔG3], in Figures 3c and S11. We quantitatively
demonstrate that ΔG2 is the ΔGopt for OER based on the
prediction efficiency (Figure 3d).
The developed approach allows a quantitative comparison of

the prediction efficiency across different electrochemical
reactions. We show a plot of the prediction efficiency for the
ΔGopt as a function of the overpotential for the considered
electrochemical reactions in Figure 4. Based on this analysis, we
find that the prediction efficiency for 2e− electrochemical
reactions such as HER and ClER is greater than that for 4e−

ORR and OER. This suggests that the likelihood of utilizing
DFT calculations to identify highly active candidates will be
more probable for 2e− reactions compared to 4e− reactions.
Further, the differences in prediction efficiency between 2e−

and 4e− suggest that predicting selectivity trends is fraught with
challenges and requires a revisiting of the utilized descriptor
that aims to optimize prediction efficiency for selectivity.

Figure 3. (a) The computed scaling relation between the binding energies of the intermediates, OH* and OOH*, with the associated uncertainty in
the intercept. (b) The limiting potential as a function of the descriptor. ΔG2 = GO* − GOH*. The shaded regions represent the uncertainty and the
error-bars convey the descriptor uncertainty referenced to VO2. (c) Probability map of the limiting potential as a function of the expectation value of
the descriptor (E[ΔG2]). The red curve represents the predicted expected activity, UEL. (d) Comparison of the prediction efficiencies of the two
descriptors. Among the two, ΔG2 provides higher distinguishability of materials, by enhancing the prediction efficiency for oxygen evolution.
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In this work, although we have obtained the descriptor PDF
using the BEEF-vdW XC functional, the probabilistic
uncertainty-propagation framework is universally applicable
regardless of the origin of the descriptor PDF. For example, the
descriptor PDFs could be obtained from machine learning
based models.58 It is worth highlighting that the prediction
efficiency is determined by the descriptor uncertainty (σ),
which could be reduced with higher-order DFT methods.
mBEEF is a meta-GGA based functional, with built-in error
estimation capability.59 This functional could give rise to lower
descriptor uncertainty leading to improved prediction effi-
ciency. We suggest two approaches without increased computa-
tional complexity, through the use of (i) hybrid material
reference, and (ii) hybrid descriptors. We demonstrate in the
Supporting Information that a two-material reference scheme
for oxygen reduction leads to increased prediction efficiency.
Specifically, we show that referencing relative to a combination
of Pt and Au leads to improved prediction efficiency. Reference
states leading to systematic error reduction is widely established
for bulk formation energies.55,60

We have presented a method to carry out robust material
selection through a systematic approach of incorporating
uncertainty in density functional theory calculated energies.
We propose that for increased prediction accuracy, screening
studies should be based on the expected activity from the
probabilistic approach. We define a quantity termed as the
prediction efficiency, which can be used to identify the ΔGopt
and compare the predictability of DFT across different
electrochemical reactions. The prediction limit, which is the
highest expected activity, represents the activity above which no
assertive prediction can be made using computational
approaches alone. This implies that identifying material
candidates above the prediction limit requires more accurate
computations and/or experiment-theory coupling. We demon-
strate this by applying it to four electrochemical reactions,
namely hydrogen evolution, chlorine evolution, oxygen
reduction and oxygen evolution. We argue that the descriptor

must be chosen such that it maximizes the prediction efficiency
over the activity range of interest. We show conclusively that
the ΔGopt for 4 and 2e− ORR are GOH* and GOOH*,
respectively. Similarly, for oxygen evolution reaction, the
ΔGopt is identified to be ΔG2 = ΔGO* − ΔGOH*. Finally,
across reactions, we find that the prediction efficiency for 2e−

electrochemical reactions such as HER and ClER is greater than
that for 4e− ORR and OER. We believe that the use of
prediction efficiency should be ubiquitous and should form an
integral part of descriptor-based activity predictions.
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