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Abstract
Analysis of safety parameters with usage of criticality analysis and heat output for pressurized

water reactors (Case Study: TRIGA MARK 2 Nuclear Reactor). The objective of the project is
to couple critically equations for neutron population inside the nuclear core of PWR reactor with
the heat outputs and to create a control program which analyses safety of the PWR reactor.

• FORTAN is used as the main programming language for the analysis of neutron population
and fission critically equations..

• Analysis of Neutron Population, Cross sections and its effect on criticality is performed for
sub-critical, super-critical and critical reactive states.

• ANSYS CFD is used for the analysis of heat transfer from nuclear fuel rods to water under
high pressure conditions for temperature profile of various reactive states.
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CHAPTER 1 

INTRODUCTION 

 

 

 

There has been continuous changes and development in the field of energy in the 20th century. 

The development range is across the whole nation including urban as well as the rural. The 

work rate has increased due to advancement in technology, systematic work culture, energy 

source utilization and using alternate sources of energy. 

Today Petroleum Industries have become the backbone of the nation’s economy and each and 

every industry is dependent on it. Studies indicate that the petroleum based products are 

exhausting day by day with an increase in the concern for what could replace it at that scale. 

Governments of various nations have started to increase their funds on alternate source of 

energy which could be as abundant as petroleum once was. Moreover petroleum has its own 

losses due to increased pollution, which has caused global increase in temperatures, global 

warming.  

In India the rate of production of petroleum and its products is much less than its requirements. 

Thus we often depend on other nations for our fuel requirements such as the United States of 

America, Southern Arab Countries etc. But this overreliance on imported fuel may lead to 

increase in debt and restricted assets. So it’s important to think on various other types of energy 

required to fulfill our demands. 

The coal reserves in the world would maximum serve for 40 years and if crude oil could be 

replaced by it, its life would have to increase a few more years ( around 20-30) which is less 

than possible. Thus the best option with us is to develop nuclear power sources to completely 

eliminate the use of crude or coal based thermal energy/ 

It is important to take into consideration the cost of generation of energy during the selection 

because if all the nuclear fuel if being imported would increase to cost of generation much 

higher and that could affect the economy of the nation. So various tests need to be done on 

other kinds of nuclear energy which can be harnessed, one of which is using Thorium.  

In this project we study the safety parameters required for such nuclear reactors with the help 

of nuclear criticality analysis and heat output of a pressurized water reactor. We use the 

parameters of a specific TRIGA MARK II reactor and study the neutron flux generation for 

safe criticality limit. We also study the relationship between heat output and the neutron 

generation to find the safe limit of operation. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

2.1 General Description of Reactor 

250-kW TRIGA Mark II reactor uses light water and graphite rods as reflector. Various 

views of the reactor are shown in Figures 2.1 and 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: TRIGA Reactor Side View 
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Figure 2.2 TRIGA Reactor Top View 

 

2.2 Reactor Core 

A cylindrical core structure is placed at the bottom. Fig. 2.3 shows the arrangement of the 

core. 

The core consists of 91 rods which include fuel elements and other components like a neutron 

source, control rods, irradiation channels, etc.  
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All elements form a concentric circular sings with their actual position and diameters 

mentioned in Table 2.1. 

Aluminium makes up the empty irradiation tube which takes the position of A1. E10, D8, 

E11 positions are taken by the fuel rods.  

 

 

Figure 2.3: Core rod arrangement 

 

Table 2.1 Ring Element configuration 

Ring name Position Dia (inches) 

A 1 0 

B 6 3.2 

C 12 6.3 

D 18 9.4 

E 24 12.5 

F 30 15.7 

 

2.3 Core Support Grids 

They are aluminium rods of same thickness and varying diameters that act as a support 

structure of the fuel rods. To provide where the actual rod will go in, there is a top grid 
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plate provided for correct positioning. Flux in the core is measure using probes which are 

instered from the small holes on the upper plate. They are in radial direction with around 

three radial lines containing 16 holes from B-3 to F-11, B-6 to F-24 and B-2 to F-9. Fig. 

2.4 explains the above arrangement. 

 

 

 

Figure 2.4: Schematic Views 
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2.4       Graphite Reflector 

The dimensions of the casing, the rotary specimen-rack and the reflector groove are provided 

in Figure 2.4 and in Table 2.2.  

Table 2.2: Reflector Dimensions 

Component Dimension 

[inch] 

Material 

Reflector  Graphite/Carbon 

Diameter – Outer 42.8  

Diameter – Inner  18.9  
   Cladding  Al 

Inner – Top Thickness 0.15  
Outer – bottom Thickness 0.30  

Rotary specimen-rack 

groove 

 Air 

Diameter – Outer 24.9  

Diameter – Inner  25.8  
Specimen rack  Aluminum 

Diameter of holes 32 mm  
Irradiation channels  Aluminum 

Diameter – Outer 8.1  

Diameter – Inner  6.4  

 

2.5        Fuel Elements 

Cylindrical fuel elements have a stainless steel cladding of specification SS-304. It has a 

diameter of 1.5 inch with length of 28 inches. Inside these casings the fuel element length is 

15 inches with graphite slugs at both the opening ends. These act as reflectors. A 

homogeneous mixture of zirconium hydride and uranium form the fuel. The geometry and 

dimensions are given in Fig. 2.5 and Table 2.3. 
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Figure 2.5: Fuel Element 
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Table 2.3: Data for Fuel-Element 

Component Dimension 

[inch] 

Material Density [g/cm3] 

Fuel element    

Diameter - Outer 

Element - length 

Material of the Fuel 

1.5 

28.5 

U-ZrH 6.1 

Diameter - Outer 

Diameter - Inner 

1.5 

0.24 

  

Zr rod  Zr 6.4 

Diameter 

Height 

0.24 

15.0 
  

Axial reflector  Graphite 1.4 

Diameter 

Height upper 

Height lower 

1.5 

2.7 

3.8 

  

Supporting disc  Molybdenum 10.3 
Thickness 0.03225   
Cladding  SS-304 7.8 

Thickness 0.03   
Top and bottom ends  SS-304 7.8 

Height top 

Height bottom 

4.2 

3.1 
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CHAPTER 3

 METHODOLOGY

Diffusion Theory3.1

It is necessary to predict neutron distr ibution inside a nuclear reactor. The exact de-

scription of all the processes of neutrons (collisions, transport, nuclear reactions) is very 

difficult. The first approximation describes the movement of neutrons as a kind of diffu-

sion. This approximation is called diffusion approximation and was used in development 

of the first types of nuclear reactors. More advanced methods are developed now, but still, 

diffusion theory is widely used for the analysis of large nuclear reactors. The complete the-

ory describing all neutron properties with little approximation is Transport theory solving 

Boltzmann transport equation.

 

              

                

              

                

              

                 

            

3.1.1 Fick’s Law 

 The solute diffuses from the region of higher concentration to the region of lower 

concentration when concentration of a solute in one region of solution is greater than in 
another. The negative  gradient of the solute concentration gives rate of diffusion. 
Neutrons behave to a good approximation in the  same way.This concept remains the 
same for neutrons in a reactor where the neutron population of one region is more than 
other.

  

                  

              

3.1.2 Neutron Current Density 

 If neutron density varies along x-direction, the net flow of neutrons perpendicular to 

the x-direction through an unit area per unit area can be expressed as:

Jx = −D
dϕ

dt
(3.1)
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The flux is generally function of three spatial variables, therefore:

J = −Dgradϕ = −D ▽ ϕ (3.2)

Here J is called neutron current density

Diffusion
 

Coefficient3.1.3

  We assume that D is not a function of spatial variables. The diffusion coefficient can 

be approximately calculated as:

D =
λtr

3
(3.3)

where λtr is transport mean free path.

λtr =
1

Σtr

=
1

Σs(1 − µs)
(3.4)

               

            

 Mean free path is an average distance a neutron will move in its original direction 

after infinite number of collisions. It can be calculated for most of the neutron energies 

as:

µ =
2

3A
(3.5)

3.1.4 Validity of Ficks Law

           

       

              
   

Fick's law is approximation which is not valid under the following conditions:

• Strongly absorbent Neutron Medium
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• Strongly anisotropic scattering of neutrons.

 These conditions are acceptable for every practical reactor problem. Ficks law and 

diffusion theory is therefore only the first estimate.

General Equation of Continuity3.1.5

             

                  

                  

             

      

                     

             

 In an arbitray volume of a diffusive medium the number of neutrons may change. 

The change of the number of neutrons is a result of a flow of  neutrons in or out of V, 

some neutrons are absorbed inside V and there might be also neutron sources inside 

volume V. 

(
rate of change
in number of

neutrons in V

)
=




rate of

production
of neutrons

in V


−




rate of

absorption
of neutrons

in V


 −




rate of
leakage of
neutrons
from V




Rate of Change of Neutrons in V3.1.6

                      

 
 Total number of neutron can be given by:

∫

V

ndV

The rate of change is:

 dt

d 
∫

V 
ndV 

which is written as: ∫

V

∂n

∂t
dV
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Production and Absorption Rate in V3.1.7

 s - rate at which neutrons source emits per volume in V. Thus,

Production ratre =

∫

V

sdV

 Σaϕ is the rate at which neutrons are lost by absorption per cm3/sec.

Absorption rate =

∫

V

ΣaϕdV

Leakage Rate out of V3.1.8

The current density is given by J. Thus the total leakage can be given by:

Leakage Rate =

∫

A

JndA

 By the divergence theo rem:

∫

A

JndA =

∫

V

divJdV

Resulting
 

Equation
 

of
 

Continuity3.1.9

∫

V

∂n

∂t
dV =

∫

V

sdV −
∫

V

ΣaϕdV −
∫

V

divJdV
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∂n

∂t
= s − Σaϕ − divJ (3.6)

−divJ − Σaϕ + s = 0

Diffusion

 

Equation3.1.10

             

     

There is a relation

 

between

 

neutron

 

flux

 

and

 

neutron

 

current

 

density.

 

One

 

of

these

 

unknowns

 

can

 

be

 

eliminated

 

by

 

Ficks

 

law.

 

Substitution

 

of

 

(2.2)

 

into

 

(2.6)

 

leads

 

to:

−div(−Dgradϕ) − −Σaϕ + s =
∂n

∂t

Diffusion coefficient (D) is spatially independent

Ddiv(gradϕ)

−
Σaϕ + s =

∂n

∂t

The continuity equation can be fur ther simplified by introducing symbol

▽2 ≡ div grad

called Laplacian operator.

The resulting equation is called diffusion equation

D.▽2.ϕ − Σa.ϕ + s = 1

v

∂ϕ

∂t
(3.7)

If only time independent problems are considered, steady-state diffusion equation is

formulated
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D ▽2 ϕ − Σaϕ + s = 0 (3.8)

3.1.11 Laplacian Operator

Formula for Laplacian depends on used coordinate system.

   

2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

1 ∂ ∂ 1 ∂2 

r ∂r 
(.r 

∂r 
) + 

r2 ∂ϑ2
+

∂2

∂z2

• in rectangular coordinates:

 ▽ 

• for cylindrical coordinates:

 .2  ▽ = 

• in spherical coordinates:

▽2 = 1 ∂ 2 .∂ 1 ∂ ∂ 1 .∂2 

r2 ∂r 
(r 

∂r 
) + 

r2 .sin ϑ ∂ϑ 
(sin ϑ 

∂ϑ 
) + 

r2 s.in2 ϑ ∂φ2

1D Laplacian Operators3.1.12

In the simplest examples in one-dimensional space, the Laplacian operator reduces to

the following formulas:

▽2 =
∂2

∂x2

▽2 =
1

r.
.∂
∂r

(r.
∂

∂r
) =

∂2

∂r2
+

1.
r

∂

∂r

• rectangular coordinates:

• cylindrical coordinates:

• for spherical coordinates: ▽.2 =
1

r2

∂

∂r
(r2 .∂

∂r
) =

∂2

∂r2
+

2

r

∂

∂r
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3.1.13 Diffusion Length

The equation 2.8 is often divded by D, resulting in:

▽2 ϕ − 1

L2
ϕ +

s

D
= 0 (3.9)

Parameter L2 is defined as:

L2 =
D

Σa

The quantity L is called diffusion length with unit cm. Quantity L2 is diffusion area,

unit cm2.

Boundary Condition3.1.14

 The diffusion equation was derived using Ficks law, therefore conditions for validity 

of Ficks law are also valid for the diffusion equation. There are typical boundary 

conditions:

 • Neutron flux must be non-negative and finite:

 0 ≤ ϕ<∞

A = B

(JA)n = (JB)n

• Boundary condition for an external boundary of a diffusive medium.

• Source conditions.

Extrapolation
 

Distance3.1.15

Ficks law is not valid for area close to an external surface between the diffusive medium
and atmosphere. It was found that if the flux vanishes in a distance d from the surface, then

15 



the flux calculated by diffusion theory is close to the real flux. From relation for 

diffusion coefficient D =  λtr/3 results that d = 2.13 D. The extrapolation distance is 

usually in units of several cm and therefore it can be in many cases neglected and 

assumed that neutron flux diminishes at the physical boundary.

Figure 3.1: Extrapolation Distance Visualisation

  If d is not negligible, physical dimensions of the reactor are increased by d and extrap- 

olated boundary is formulated with dimension a + d.

  Source Condition The diffusion equation is not valid for the neutron source location, 

but it is necessary to match the magnitude of the neutron flux to the source intensity. The 

source is surrounded by area for which it holds that all neutrons flowing through this area 

must come from the neutron source characterized by source emissivity S. Formulation

depends on the source geometry: planar (3-10a), point (3-10b), or line (3-10c)

lim
x→0

J(x) =
S

2
(3.10a)

lim
r→0

4πr2J(r) = S (3.10b)

16 



lim
r→0

2πrJ (r) = S (3.10c)

This condition will be illustrated by examples of neutron sources in diffusive media.

Infinite Diffusive Medium3.1.16

Spatial distr ibution of neutron flux in an infinite media will be calculated using dif-

fusion equation and boundar y conditions. Basic source geometries will be calculating

plane, point and line. Only monoenergetic sources of neutrons are analysed

     3.1.17 Planar Source in Infinite Diffusive Medium

 The flux is only function of distance from the plane, e.g. in x direction. The source 

location is not part of the analysed area. The plane is located in x=0 and there are two 

solution for positive (x>0) and negative (x<0) directions. The diffusion equation (5-9) 

has the following form:

d2ϕ

dx2
− 1

L2
ϕ = 0

x ̸= 0

Solution for x=0 is expected in form:

ϕ(x) = e−λx

Second Derivative:

d2ϕ

dx2
= λ2e−λx

Substituted in the above equation leads to:

λ2e−λx =
1

L2
e−λx

 There are two possible solution for λ = ± 
L
1 The diffusion equation for planar source 

has thus general solution with two constants to be determined by boundary conditions 
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ϕ(x) = Ae−x/L + Cex/L

The constant A is determined from the source condition. From Ficks law:

J = −D
dϕ

dx
=

DA

L
e−x/L

Source condition for the planar source:

lim
x→0

J(.x) = lim
x→0

D.A
L

e−x./L =
S

2

This gives constant A:

A =
SL

2D

 Therefore,

ϕ(x) =
SL

2D
e−x/L (3.11)

The solution is valid for x>0, but because of symmetry of the problem similar formu-
lation could be obtained for negative x-direction.

Point Source in Infinite Diffusive Medium3.1.18

           

                

            

 The source is located in the centre of a spherical coordinate system and neutron flux 

depends only on distance r from the source. The diffusion equation (3.9) in spherical 

coordinate system becomes for r = 0̸ :

d2ϕ

dr2
+

2

r

dϕ

dr
− 1

L2
ϕ = 0

 Substituting u(r) = rϕ(r)

Substitution into the above equation results in:

18 



d2u

dr2
− 1

L2
u = 0

The solution for function u is found in an identical way as in the case of the planar

source:

u(r) = Ae−r/L + Cer/L

Transform to the original function gives:

 e−r/L er/L 

 ϕ(r) = A + C 
 r r 

 Constants A and C must be determined from boundary conditions. It is clear that if the 

neutron density flux must remain finite, C must equal zero. 

 From Ficks law:

J = −D
dϕ

dr
= DA(

1

rL
+

1

r2
)e

−r/L

The source condition for point source is:

lim
r→0

4πr2J (r) = lim
r→0

4πDA(
r.
L

+ 1)e−r./L = S.

This gives constant A:

A =
S

4πD

Resulting equation for neutron flux distribution is following:

ϕ(r) =
Se−r/L

4πDr
(3.12)
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Line Source in Infinite Diffusive Medium3.1.19

 The source is located in the centre of a cylindical coordinate system and neutron flux 

depends only on distance r from the source. The diffusion equation (2.9) in the cylindical 

coordinate system becomes for r = 0̸ :

d2ϕ(r)

dr2
+

1

r

dϕ(r)

dr
− 1

L2
ϕ(r) = 0

The equation can be transformed by substitution u=r/L into modified Bessels equation

of the order zero:

u2d2ϕ(r)

du2
+ u

dϕ(r)

du
− u2ϕ(u) = 0

3.1.19.1 Odinary Bessel’s Functions

Bessels equation is:

x2d2ϕ

dx2
+ x

dϕ

dx
+ (α2x2 − n2)ϕ = 0

where α and n are constants. ’n’ is order of the equation, in practical problems it is

usually zero General solution to Bessels equation is:

ϕ(x) = AJn(αx) + CYn(αx)

Functions Jn and Yn are called ordinary Bessels functions of the first and second kind,

respectively.

3.1.19.2 Modified Bessel’s Function

If α2 is negative, Bessels equation becomes:

x2d2ϕ

dx2
+ x

dϕ

dx
− (α2x2 + n2)ϕ = 0
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General solution is in form of modified Bessels functions of the first and second kind,

respectively −In and Kn.

ϕ(x) = AIn(αx) + CKn(αx)

This shows the Bessel’s Function used in reactor physics.

General solution of this kind of Bessels equation is in form of modified Bessels func-

tion of the first (I) and second (K) kind of the order zero.

ϕ(u) = AI0(u) + CK0(u)

ϕ(r) = AI0(r/L) + CK0(r/L)

Given the fact that function

I0 → ∞

for

r → ∞

, constant A must equal 0 and above equation reduces to:

ϕ(r) = CK0(r/L)

The constant C is found from the source condition.

From Ficks law, using dK0

dr
= −K1:

J = −D
dϕ

dr
= −DC

dK0(r/L)

dr
=

DCK1(r/L)

L

K1(x) behaves similar to 1
x

function. It can be used in the source condition:

lim
r→0

2π(r/L)DCK1(r/L) = S

It can be written that limr→0[(r/L)K1(r/L) = 1]

Resulting value for constant C is:

C =
S

2πD

21 



Finally,

ϕ(.r) =
S

2πD
K0(

r

L
) (3.13)

Cubical Reactor Geometry3.1.19.3

We take a rectangular geometry of a,b and c, such that the flux vanishes at edges:

(±a/2,±b/2,±c/2)

Rearranging equation 2.8,

D ▽2 ϕ − Σcϕ + s = 0

Assume neutron source is: s = Σckϕ Assume ϕ(x, y, z) = F (x).G(y).H (z)

Equation thus becomes:

 ∂2F ∂2G ∂2H 
G(y).H(z). 

∂x2 
+ F (x).H(z) 

∂y2 
+ F (x).G(y) 

∂z2 
= (Σc/D)(1 − k)F (x).G(y).H(z)

Dividing out by F (x)G(y)H(z) from both the sides yields:

 ∂2F ∂2G ∂2H
 ( 

∂x2 
)/F (x.) + ( 

∂y2 
)/G(y.) + ( 

∂z2 
)/H(z.) = (Σc/D)(1 − k)

 Given boundary conditions: F(a/2) = 0, F(x)= cos(xπ/a). Similarly: G(y) = cos(yπ/b), 

H(z) = cos(zπ/c)

(
∂2F

∂x2
)/F (x) = −(π/a)2

(
∂2G

∂y2
)/G(y) = −(π/b)2

(
∂2H

∂z2
)/H(z) = −(π/c)2

Overall equation satisfies:
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[(π./a)2 + (π./b)2 + (π./c)2] = (Σc/D)(k − 1)

Define Geometrical Buckling:

[(π./a)2 + (π./b)2 + (π./c)2]

Cylindrical Reactor Geometry3.1.19.4

Separation of variables in cylindrical geometry proceeds in similar fashion. Cylindrical

dimensions: radius= R, Height= H Assume flux vanishes at: (R,±H/2)

∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
+

∂2ϕ

∂z2
− Σc

D
ϕ =

−S

D

Assume: ϕ(r, z) = F (r)G(z)

Equation becomes:

[
∂2ϕ

∂r2
+

1

r

∂F

∂r
]G(z) +

∂2G

r2
F (r) =

−Σc

D
(1 − k)F (r)G(z)

Dividing out F (r)G(z) from both sides yiels:

[∂2ϕ
∂r2 + 1

r
∂F
∂r

]

F (r)
+

∂2G
r2

G(z)
=

−Σc

D
(1 − k)

Axial portion is similar to that of cubical geometry:

∂2G
r2

G(z)
=

−π

H

2

G(z) = cos(
zπ

H
)

Radial portion involves Bessel Function of the first kind:

[∂2ϕ
∂r2 + 1

r
∂F
∂r

]

F (r)
=
(−2.405r

R
)2
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Figure 3.2: Matlab Code to Solve Bessel Function
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Figure 3.3: Odinary Bessel Function Solution

Figure 3.4: Matlab Code to Solve Modified Bessel Function
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Figure 3.5: Modified Bessel Function Solution

Figure 3.6: Matlab function for Cubical Geometry

26 



Figure 3.7: Neutron Flux in a Cubical Geometry
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F (r) = J0
2.405r

R

Overall Geometric Buckling for a cylinder is expressed as:

B2 =
(2.405

R
)2 +

( π

H
)2

  3.2      Neutron Multiplication Factor

3.2.1 Fission Source of Neutrons

The reactor is described by one-group diffusion equation:

D ▽2 ϕ − Σaϕ + s =
1

v

ϕ

∂t

This equation is time-dependent and power of the reactor might increase or decrease.

Fission neutrons are the source of neutrons (s) in a nuclear reactor.

If Σf is fission cross-section of the fuel and number of neutrons emitted per one fission,

source s can be expressed as:

s = vΣfϕ

If fission source does not balance neutron absorption and leakage, then right-hand side

of equation is nonzero.

Parameter k can be used to adjust the source strength and to reach a steady state diffu-

sion equation:

D ▽2 ϕ − Σaϕ +
1

k
vΣfϕ = 0
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3.2.2 One-Group Reactor Equation

Quantity geometric buckling (B2) is defined as:

B2 =
1

D
(
v

k
Σf − Σa)

 Then previous equation can be rewritten in form of one-group reactor equation: ▽2ϕ + 

B2ϕ = 0 

 The formula for buckling can be solved for the constant k:

k =
vΣf

DB2 + Σa

Multiplication

 

Factor3.2.3

k =
vΣf

DB2 + Σa
=

vΣfϕ

DB2ϕ + Σaϕ
=

vΣfϕ
−D ▽2 ϕ + Σaϕ

Physical interpretation of the previous equation is following:

• Numerator is the number of neutrons born in fission in the currentgeneration. 

• Denominator represents neutrons lost from the previous generation. 

• Since all neutrons must be absorbed or leak from the reactor, thedenominator must  
be also born in the previous generation.

This is definition of multiplication factor for a finite reactor. It can be also defined as a

neutron birth rate divided by sum ofneutron absorption and leakage rate.

Multiplication Factor for Infinite Reactor3.2.4

The neutron source term can be rewritten with neutron absorption. Let aF be cross-

section for neutron absorption in fuel, then: s = ηΣaF ϕ
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Quantity η is called neutron reproduction factor and means number of produced neu-

trons per a single neutron absorbed in the fuel.

It can be further adjusted to:

s = η
ΣaF

Σa

Σaϕ = ηfΣaϕ

where f is ΣaF

Σa

 Quantity f is a fraction of neutrons absorbed  from all neutrons absorbed in the 

reactor. In one generation, a certain number of neutrons is born related to , all these 

neutrons must be absorbed expressed as Σaϕ. 

 Of these neutrons f Σaϕ are absorbed in fuel and this leads to production of ηf Σaϕ 

neutrons. 

 We usually also consider the effect of fast electrons (ϵ) and the moderator to fuel ratio

(p), thus the overall production of neutrons is of ηf pϵΣaϕ. All these neutrons must be 

again absorbed.

Multiplication Factor for Infinite Reactor3.2.5

It means that absorption of Σaϕ neutrons in one generation leads to absorption of

ηfpϵΣaϕ neutrons in the following generation. Absorption of neutrons is directly related

to production of neutrons, therefore multiplication factor in an infinite reactor is defined

as:

k∞ =
ηfϵpΣaϕ

Σaϕ
= ηfϵp

η: multiplication constant (depends on the fuel and for uranium it is 1.32)

ϵ: fast fission factor (probability of fast neutrons undergoing fission) (For uranium it is 1.2,

it increases with the diameter of the fuel rods)

p : moderator to fuel ratio (usually 0.874)

p : moderator to fuel ratio (usually 0.874)
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Fortran Program for Calculation of Multiplication factor3.2.6

Criticality Analysis3.2.7

If the value of k > 1, then the chain reaction will pickup speed and there will be more
fission reactionsoccurring per second (Supercritical Condition).

If the value of k = 1, then the reaction will continue self sustaining with the same rate

(Critical Condition).

If the value of k < 1, then the reaction will eventually die out as the number of fission

reactions will decrease (Subcritical Condition).

Figure 3.8: Fortran Program for Calculation of Multiplication factor
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3.3      Heat Flow in Nuclear Reactor 

In steady state condition, all the heat generated must be released. This happens by the coolant 

flow which is either liquid or gaseous. The nature and operation of coolant is different according 

to the type of reactor. 

The temperature in a reactor is varied. Usually every fuel rod is of different temperature with the 

rod in the center of the reactor being the hotter compared to others. The maximum fuel 

temperature depends on the reactor power level, cooling system, and nature of fuel. The 

temperature should not exceed a limit value because with calculations we have to see the fuel rod 

temperature does not melt the other metal and claddings. 

3.3.1    Thermodynamic Considerations 

According to thermodynamics, in a reactor energy is in form of heat is generated through the 

nuclear fuel and transferred to a moving fluid. The coolant absorbs heat from fuel rods which is 

generated at q watts rate, with inlet and outlet temperature as Tin and Tout respectively, with 

fluid coolant rate of 𝑤 lb/hr or kg/hr. Thus heat required is, 

∫ 𝑐𝑝 (𝑇) 𝑑𝑇                                                               (3.14)
𝑜𝑢𝑡

 𝑖𝑛

 

 𝑐𝑝(𝑇) - Specific heat. With the rate of flow of fluid coolant being  𝑤 lb/hr or kg/hr the heat 

produced in the reactor is given by 

𝑞 = 𝑤 ∫ 𝑐𝑝(𝑇)𝑑𝑇
𝑜𝑢𝑡

𝑖𝑛

 

 When we write this in terms of thermodynamic function enthalpy 

ℎ =  𝑢 +  𝑃. 𝑣 

hin, hout being the specific enthalpies of the coolant, 

ℎ𝑜𝑢𝑡 = ℎ𝑖𝑛 +  𝑤 ∫ 𝑐𝑝(𝑇)𝑑𝑇
𝑇𝑖𝑛

𝑇𝑜𝑢𝑡

  

Therefore we can see that the above equation (3.14) as can be written again as  

𝑞 = 𝑤(ℎ𝑜𝑢𝑡 −  ℎ𝑖𝑛) 
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3.3.2     Heat Generation in Reactors 

We know that the energy released in a nuclear reactor are– KE of the neutrons, gamma and beta 

rays. Reactor parts absorb this energy. 

3.3.3     Flux Generation 

According the flux study we can find the flux for cylindrical fuel element by the Laplacian 

approximation to cylindrical coordinates and reactor equation becomes, 

1

𝑟

𝑑

𝑑𝑟
𝑟

𝑑𝜑

𝑑𝑟
+  𝐵2𝜑 = 0                                                       (3.15) 

 

𝑑2𝜑

𝑑𝑟2
 +  

1

𝑟

𝑑𝜑

𝑑𝑟
+  𝐵2𝜑 = 0                                                    (3.16) 

Using Boundary condition of  𝜑(𝑅) = 0. 

Equation (3.16) being Bessel equation’s special case, 

𝑑2𝜑

𝑑𝑟2
 +  

1

𝑟

𝑑𝜑

𝑑𝑟
+  (𝐵2 −  

𝑚2

𝑟2
) 𝜑 = 0                                          (3.17) 

In  which  m  is  a  constant.  Equation  (3.17)  has  solutions  denoted  as  𝐽𝑚(𝐵. 𝑟) and  𝑌𝑚(𝐵. 𝑟) and  
are known as first and second kind, respectively. 

Comparing (3.16) and (3.17) shows that, 𝑚 should be equal to zero. Solution is given by,

𝜑 = 𝐴𝐽0(𝐵𝑟) + 𝐶𝑌0(𝐵𝑟)                                                          (3.18)  

Coolant out  
Tout 

Coolant out  
Tout 

Figure 3.9: Coolant flowing in a reactor 
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The function 𝐽0(𝑥) and 𝑌0(𝑥) are plotted in the Figure 2. C can be taken as zero since 𝜑 is finite 

in the reactor boundary. 

 

Figure 3.10: The Bessel functions J0(x) and Y0(x) 

Thus 𝜑 reduces to, 

𝜑 = 𝐴𝐽0(𝐵𝑟)  

At �̃� the value of 𝜑 becomes zero 

𝜑(�̃�) = 𝐴𝐽0(𝐵. 𝑟) = 0 

As shown in the above figure, the function 𝐽0(𝑥) = 0 at x, marked as 𝑥1, 𝑥2 … so that 𝐽0(𝑥𝑛) = 
0. This indicates it is fulfilled on condition that B has a value of

𝐵𝑛 =  
𝑥𝑛

�̃�
 

Known as Eigen values. For critical reactor only lowest value is required which follow buckling 

as 

𝐵1
2 =  (

𝑥1

�̃�
)

2

=  (
2.405

�̃�
)

2

 

This one-group flux is then 
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𝜑 = 𝐴𝐽0 (
2.405𝑟

�̃�
) 

The constant A is again determined by  

𝑃 =  𝐸𝑅∑𝑓 ∫ 𝜑(𝑟)𝑑𝑉 

Infinite cylinder will have 𝑑𝑉 = 2𝜋𝑟𝑑𝑟. Thus, 

𝑃 =  2𝜋𝐸𝑅∑𝑓 ∫ 𝜑(𝑟)𝑟 𝑑𝑟
𝑅

0

𝑃 =  2𝜋𝐸𝑅∑𝑓𝐴 ∫ 𝐽0 (
2.405𝑟

�̃�
) 𝑟 𝑑𝑟

𝑅

0

 

The integral can be evaluated using the formula 

∫ 𝐽0(𝑥′). 𝑥′. 𝑑𝑥′ = 𝑥𝐽1(𝑥) 

Thus, 

𝑃 =
2𝜋𝐸𝑅∑𝑓𝑅2𝐴𝐽1(2.405)

2.405
=  1.35 𝐸𝑅∑𝑓𝑅2𝐴  

𝐴 =  
𝑃

1.35 𝐸𝑅∑𝑓𝑅2
 

Therefore the final expression for 𝜑 is given by, 

𝜑 =  
0.738 𝑃

𝐸𝑅∑𝑓𝑅2
 𝐽0  (

2.405𝑟

𝑅
)                                               (3.19) 

For a finite cylinder flux be determined by the distance r from axis and z from cylinder’s 

midpoint. We take height H and radius R for the fuel element. The Laplacian appropriate to 

cylindrical coordinates, the reactor equation becomes 

1

𝑟

𝜕

𝜕𝑟
𝑟

𝜕𝜑

𝜕𝑟
+  

𝜕2𝜑

𝜕𝑧2
+  𝐵2𝜑 = 0                                                               

After differentiation, 

𝑑2𝜑

𝜕𝑟2
 +  

1

𝑟

𝜕𝜑

𝜕𝑟
+  

𝜕2𝜑

𝜕𝑧2
+ 𝐵2𝜑 = 0 
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Besides satisfying this equation 𝜑 must also fulfil 𝜑(�̃�, 𝑧) = 0 and 𝜑 (𝑟, 
𝐻

.

̃

2
) = 0. Thus we obtain 

the following solution 

 𝜑(𝑟𝑧) = 𝑅(𝑟). 𝑍(𝑧)

Upon change into in equation above, one obtains 

 1 1 𝜕 𝜕𝑅 1 𝜕2𝑍
 . . 𝑟. + = −𝐵2 

 𝑅 𝑟 𝜕𝑟 𝜕𝑟 𝑍 𝜕𝑧2 

Equation must be satisfied for any r and z combination, the start terms will be constants thus we 

can write, 

𝑑2𝑅

𝜕𝑟2
 +  

1

𝑟

𝜕𝑅

𝜕𝑟
+  𝐵𝑟

2𝑅 = 0  

This is equivalent to Bessel’s equation of the first-kind order zero as before. Further, 

𝑑2𝑍

𝜕𝑧2
 +  𝐵𝑧

2𝑍 = 0 

The buckling 𝐵2 is  

𝐵2 =  𝐵𝑟
2 +  𝐵𝑧

2 

Whose solution is  

𝑍(𝑧) = 𝐴 𝑐𝑜𝑠 𝐵𝑧𝑧 + 𝐶 sin 𝐵𝑧𝑧 

Which is same as infinite slab reactor. The solution must satisfy the boundary conditions and be 

positive definite. Thus we get the solution, 

𝜑 (𝑟, 𝑧) = 𝐴𝐽0  (
2.405. 𝑟

�̃�
) cos (

𝜋. 𝑧

�̃�
)                                         (3.20) 

Where �̃� = 𝐻 + 2𝑑 and �̃� = 𝑅 + 𝑑. The constant A may be determined as before if the reactor 

power is known. 
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Figure 3.11: Buckling and flux value for a critical bare reactor (Assumption taken is d is small) 

 

3.3.4     Heat Production in Fuel Elements (Fuel Rods) 

If Ed is the energy deposited, the rate of heat production at the point r is given by 

𝑞′′′(𝒓) = 𝐸𝑑  ∫ ∑ (𝐸)𝜑(𝒓, 𝐸)𝑑𝐸
𝑓𝑟

∞

0

 

Where ∑ (𝐸)𝑓𝑟 the macroscopic fission is of the fuel and 𝜑(𝒓, 𝐸) is the energy-dependent flux. 

The unit for this expression is MeV/sec-cm3.  

The thermal flux is then, 

𝜑(𝑟, 𝑧) =
3.63𝑃

𝐸𝑅∑̅𝑓𝑉
𝐽0  (

2.405𝑟

𝑅
) 𝑐𝑜𝑠

𝜋𝑧

�̃�
                                      (3.21) 

Where, 

 P = total power 

𝐸𝑅 = recoverable energy,  

V = reactor volume, and 

�̃� and �̃� are the extrapolated boundaries. 

∑𝑓
̅̅ ̅̅  = Macroscopic fission cross-section 

 ∑𝑓𝑟
̅̅ ̅̅ ̅̅  the total fission cross-section. In the entire core is  ∑𝑓𝑟

̅̅ ̅̅ ̅̅  . 𝑥. 𝑛𝜋𝑎2𝐻. Average value of  ∑𝑓
̅̅ ̅̅  in 

the core is 
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∑̅𝑓 =  
∑̅𝑓𝑟𝑛𝜋𝑎2𝐻

𝜋𝑅2𝐻
=  

∑̅𝑓𝑟𝑛𝑎2

𝑅2
 

And the flux is, 

 

𝜑𝑇(𝑟, 𝑧) =
3.63 𝑃

𝐸𝑅∑̅𝑓𝑟𝑉𝑎2𝑛
𝐽0  (

2.405𝑟

𝑅
) 𝑐𝑜𝑠

𝜋𝑧

�̃�
  𝑤ℎ𝑒𝑟𝑒 𝑉 = 𝜋𝑅2𝐻             (3.22) 

Therefore, 

𝜑𝑇(𝑟, 𝑧) =
1.16 𝑃

𝐸𝑅∑̅𝑓𝑟𝐻𝑎2𝑛
𝐽0  (

2.405𝑟

𝑅
) 𝑐𝑜𝑠

𝜋𝑧

�̃�
                                (3.23) 

Thus the rate of heat production becomes, 

𝑞′′′(𝑟, 𝑧) =
1.16 𝑃 𝐸𝑑

𝐸𝑅𝐻𝑎2𝑛
𝐽0  (

2.405. 𝑟

𝑅
) 𝑐𝑜𝑠

𝜋𝑧

�̃�
                                 (3.24) 

From the above equation maximum rate of heat production occurs at the centre. Therefore 

maximum q’’’ can be given by, 

𝑞′′′𝑚𝑎𝑥 =
1.16 𝑃 𝐸𝑑

𝐸𝑅𝐻𝑎2𝑛
                                                      (3.25) 

The maximum rate is 

𝑞′′′
𝑚𝑎𝑥

(𝑟) =  𝑞′′′
𝑚𝑎𝑥

 𝐽 (
2.405 𝑟

�̃�
)                                       (3.26) 

The total rate is given by, 

𝑞𝑟(𝑟) = 𝜋𝑎2 ∫ 𝑞′′′(𝑟𝑧) 𝑑𝑧
𝐻/2

− 𝐻/2

                                           (3.27) 

𝑞′′′(𝑟𝑧) From above equation gives, 

𝑞𝑟(𝑟) =  
1.16 𝑃 𝐸𝑑

𝐸𝑅𝐻𝑛
𝐽0  (

2.405𝑟

𝑅
) ∫ cos (

𝜋𝑧

𝐻
)  𝑑𝑧

𝐻/2

−𝐻/2

 =   
2.32 𝑃 𝐸𝑑

𝐸𝑅𝑛
𝐽0  (

2.405𝑟

𝑅
)       (3.28) 

The value of 𝑞′′′𝑚𝑎𝑥 is overestimated if we consider a real reactor with non-uniform or reflected 

fueled reactor. To this effect we see the following expression, 

𝑞′′′𝑚𝑎𝑥 =  𝐸𝑑∑̅𝑓𝑟𝜑𝑚𝑎𝑥,                                                           (3.29) 
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Where 𝜑𝑚𝑎𝑥 is the maximum value. Total reactor power is 

𝑃 =  𝐸𝑅∑̅𝑓𝜑𝑎𝑣𝑉,                                                                  (3.30) 

Above equations (3.29) and (3.340) and rearranging gives 

𝑞′′′𝑚𝑎𝑥 =  
𝑃𝐸𝑑∑̅𝑓𝑟𝜑𝑚𝑎𝑥

𝐸𝑅∑̅𝑓𝜑𝑎𝑣𝑉
=  

𝑃𝐸𝑑∑̅𝑓𝑟𝛺

𝐸𝑅∑̅𝑓𝑉
                                          (3.31) 

Where 𝛺 is the maximum to average flux ratio. Equation for ∑̅𝑓 yields 

𝑞′′′𝑚𝑎𝑥 =  
𝑃. 𝐸𝑑 . 𝑅2. 𝛺

𝑎2. 𝑛. 𝑉. 𝐸𝑅
=  

𝑃𝐸𝑑𝛺

𝜋𝐻𝑎2𝑛𝐸𝑅
                                            (3.32) 

For an actual Reactor (Triga Mark II) we can take 𝛺 = 2.4. The comparing Equation (3.22) and 

(3.32) shows that 

(𝑞′′′
𝑚𝑎𝑥

)𝑎𝑐𝑡𝑢𝑎𝑙 =  
𝛺

1.16𝜋
(𝑞′′′

𝑚𝑎𝑥
)𝑏𝑎𝑟𝑒 ≅

2

3
 (𝑞′′′

𝑚𝑎𝑥
)

𝑏𝑎𝑟𝑒
           (3.34) 

 

3.3.5     Heat Flow by Conduction  

Energy from a reactor is removed using two heat transfer process – conduction and convection. 

There is no macroscopic motion of any part of the body in conduction. It is only due to the 

difference in temperature between the bodies. Heat convection includes the heat transfer through 

fluid (here the coolant). It is also due to temperature change but here there is macroscopic 

movement of the body during heat transfer. Thus the heat is transferred to the coolant (water) 

from the fuel surface using conduction and then out of the system using convection in the fluid 

medium.  

3.3.6     The Equations of Heat Conduction 

Heat conduction obeys Fourier’s Law,  

𝑞′′ =  −𝑘. 𝑔𝑟𝑎𝑑(𝑇)  

Where 𝑞′′, is the heat flux, which equals the rate f that is the outward normal heat flow. 𝑘 is the 

thermal conductivity whose value is defined for all the substances. The function 𝑇 is of 

temperature. We can see the similarity between this and Fick’s law that we used for neutron 

density calculations.  
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Let us consider an arbitrary volume 𝑉 of a material where heat is being produced. We can say 

that from conservation of energy, during steady state the rate of heat that flows out of the surface  

𝑉. This can be written as 

[
𝑁𝑒𝑡 ℎ𝑒𝑎𝑡 𝑓𝑙𝑜𝑤 𝑜𝑢𝑡

𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦
] −  [

ℎ𝑒𝑎𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
𝑤𝑖𝑡ℎ𝑖𝑛 𝑉

] = 0 

Thus solving the above we get,  

𝐻𝑒𝑎𝑡 − 𝑓𝑙𝑜𝑤 =  ∫ 𝑞′′𝑛 . 𝑑𝐴
𝐴

 

Using divergence theorem the equation (46) becomes,  

  

𝐻𝑒𝑎𝑡 − 𝑓𝑙𝑜𝑤 =  ∫ 𝑑𝑖𝑣 𝑞′′ 𝑑𝑉
𝑉

 

Heat produced within V is equal to  

𝐻𝑒𝑎𝑡 − 𝑓𝑙𝑜𝑤 =  ∫  𝑞′′′. 𝑑𝑉
𝑉

 

Thus the relationship is obtained 

𝑑𝑖𝑣 (𝑞′′) − 𝑞′′′ = 0                                                             (3.35) 

This result is the steady state equation of conductivity for heat transfer and is analogous to the 

equation of continuity in neutron flux generation. There is no term in the equation (3.35) 

equivalent to the absorption term does not vanish in medium same that neutrons do. 

Thus rearranging the above equations and dividing it by k gives, 

∇2𝑇 =  
𝑞′′′

𝑘
= 0                                                                (3.36) 

This is known as Poisson’s equation. For no heat generation area, 𝑞′′′ = 0 and equation (51) 

reduces to  

  

∇2𝑇 =  0                                                                   (3.37) 

This is known as the Laplace’s equation. 
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Now using these concepts we will be able to calculate the heat from a fuel rod for the max-

temperature in the fuel. It is important to nte that the maximum temperature should not exceed 

the safety limit. 

 

3.3.6.1    Plate-Type Fuel Elements  

Consider a plate-type fuel-element where the fuel central strip – “Meat” has a thickness of 2a 

and cladding with thickness of b. 

 

Figure 3.12: Plate Type Fuel Element 

While doing the next calculations we will take few important assumptions that 

 Heat generated uniformly at rate of 𝑞′′′. 

 Temperature reached steady state with distribution throughout the element. 

 Thickness of the element is negligible compared to the width or length of the element, 

therefore negligible amount of heat flows through the edges. 

 Heat only flows in the ‘x’ direction. 

  

The temperature profile now can be calculated using, 

𝑑2(𝑇)

𝑑(𝑥2)
+  

𝑞′′′

𝑘𝑓
= 0 

Where 𝑘𝑓- thermal conductivity. 

Boundary conditions used are, 

𝑇(0) =  𝑇𝑚 

41 



𝑇𝑚-maximum (ventral temperature) at 𝑥 = 0. 

 

 𝑑(𝑇)
 = 0 
 𝑑𝑥 

Integrating Equation twice gives the following general solution  

𝑇 =  
𝑞′′′

2𝑘𝑓
(𝑥)2 = 𝐶1. (𝑥) +  𝐶2  

Using the boundary conditions we get, 

𝑇 = 𝑇𝑚 −  
𝑞′′′

2𝑘𝑓
𝑥2 

Thus surface temperature will be, 

𝑇𝑠 = 𝑇𝑚 −  
𝑞′′′. 𝑎2

2𝑘𝑓
                                                           (3.38) 

If the area of one face of the fuel element is A, then the volume of the fuel element is 2aA. 

Therefore the rate of heat production 

𝑞 = 𝑞′′′(2𝑎𝐴) 

Heat for one face can be given by, 

𝑞 = 𝑞′′′(𝑎. 𝐴) 

By Fourier’s Law, 

𝑞′′ =  −𝑘𝑓

𝑑𝑇

𝑑𝑥
 

Heat flow per unit area                              𝑞′′ = (𝑞′′′. 𝑎) 

Total heat rate can then be given by, 

𝑞 = 𝑞′′′(𝑎𝐴) = 𝑞′′𝐴                                                (3.39) 

Rearranging above equations we can get, 

𝑞′′′ =  
2𝑘𝑓(𝑇𝑚 − 𝑇𝑠)

𝑎2
                                                     (3.40) 

Using (3.39) in (3.40) we get, 
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𝑞 =  
2𝑘𝑓(𝑇𝑚 − 𝑇𝑠)𝐴

𝑎
                                                     (3.41) 

Equation (3.41) can be rewritten as, 

𝑞 =  
(𝑇𝑚 − 𝑇𝑠)

[
𝑎

2𝑘𝑓𝐴
]

                                                          (3.42) 

We can see the analogous of the above equation to current and voltage where temperature 

difference is like the potential difference, heat is equivalent to current and denominator is 

thermal resistance. 

Now let us see the temperature distribution in the cladding. There is negligible generation of heat 

in the cladding. Therefore, 

𝑑2𝑇

𝑑𝑥2
= 0 

Boundary conditions for the cladding is  

𝑇(𝑎) =  𝑇𝑠, 

𝑇(𝑎 + 𝑏) =  𝑇𝑐 (𝑜𝑢𝑡𝑒𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔) 

The general solution for the above equation (64) is 

𝑇 =  𝐶1𝑥 + 𝐶2 

Substituting the boundary conditions to (65) 

𝑇𝑠 =  𝐶1𝑎 + 𝐶2 

𝑇𝑐 =  𝐶1(𝑎 + 𝑏)  + 𝐶2 

Solving the above equations to find out the constants, 

𝐶1 =
𝑇𝑐 − 𝑇𝑠

𝑏
 

𝐶2 =
𝑇𝑠(𝑎 + 𝑏) − 𝑇𝑐𝑎

𝑏
 

Substituting these values and rearrange to get the cladding temperature profile 

𝑇 =  𝑇𝑠 −
(𝑥 − 𝑎)(𝑇𝑠 − 𝑇𝑐)

𝑏
                                               (3.43) 
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The temperature profile inside the fuel region is quadratic whereas in the cladding is linear. From 

(3.43) we can find 
𝑑𝑇

𝑑𝑥
 which is then put to the Fourier’s Law with 𝑘𝑐 as the conductivity of the 

cladding. 

𝑞′′ = 𝑘𝑐

𝑇𝑠 − 𝑇𝑐

𝑏
                                                       (3.44) 

We use  𝑞 = 𝑞′′𝐴 to find  

  

(𝑇𝑠 − 𝑇𝑐) = 𝑞 (
𝑏

𝑘𝑐𝐴
)                                                 (3.45) 

From above we get                                            

(𝑇𝑚 − 𝑇𝑠) = 𝑞 (
𝑎

2𝑘𝑓𝐴
)                                                 (3.46) 

Adding (3.45) and (3.46), 

(𝑇𝑚 − 𝑇𝑐) = 𝑞 (
𝑏

𝑘𝑐𝐴
+

𝑎

2𝑘𝑓𝐴
)                                         (3.47) 

Where (
𝑏

𝑘𝑐𝐴
+

𝑎

2𝑘𝑓𝐴
) is the total resistance of the element system. 
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Figure 3.13: Temperature distribution across plate-type fuel-element 
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3.3.6.2    Cylindrical Fuel Rod 

Consider the figure below where inner cylinder represents the fuel rod with a radius of ‘a’ and 

the outer cylinder acting as a thickness is the cladding of ‘b’ that is a radius of ‘a+b’ from the 

center. Heat is produced at constant rate as discussed earlier. 

 

 

 

 

 

 

 

For cylindrical heat flow the following equation is used, 

𝑑2(𝑇)

𝑑(𝑟2)
+  

1

𝑟

𝑑(𝑇)

𝑑(𝑟)
+

(𝑞′′′)

𝑘𝑓
= 0 

Boundary conditions are, 

(i) Temperature is varying inside the rod 

(ii) Temperature at the center is maximum   

(iii) 
𝑑𝑇

𝑑𝑟
  at 𝑟 = 0 is 0 

Using general solution, 

𝑇 =  −
𝑞′′′. 𝑟2

4𝑘𝑓
+  𝐶1𝑙𝑛 𝑟 +  𝐶2 

Since 
𝑑𝑇

𝑑𝑟
  at 𝑟 = 0 is 0, therefore 𝑪𝟏= 0. Substituting the value of 𝑪𝟏 in above we get, 

𝑇 =  −
𝑞′′′𝑟2

4𝑘𝑓
+  𝐶2 

Now using the condition at 𝑟 = 0, 𝑇(0) =  𝑇𝑚: Therefore𝐶2 =  𝑇𝑚. Thus, 

𝑇 =  𝑇𝑚 −
𝑞′′′. 𝑟2

4. 𝑘𝑓
                                                          (3.48) 

Figure 3.14: Cylindrical Fuel Element 
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𝑞 = (𝑉𝑜𝑙𝑢𝑚𝑒) 𝑥 𝑞′′′ = 𝜋𝑎2𝐻𝑞′′′                                             (3.49) 

Where H is the total height of core rods. 

For (𝑞′′′) from equation (3.48) we get, 

𝑞′′′ =  
𝑇𝑚 −  𝑇𝑠

(
𝑟2

4𝑘𝑓
)

                                                              (3.50) 

 

Now for surface of the fuel rod at 𝑟 = 𝑎 we get, 

  

𝑞′′′ =  
𝑇𝑚 −  𝑇𝑠

(
𝑎2

4𝑘𝑓
)

                                                           (3.51) 

From the relation 𝑞 = 𝑞′′′(𝑉𝑜𝑙𝑢𝑚𝑒) we get, 

𝑞 = 𝜋𝑎2𝐻 .  
𝑇𝑚 −  𝑇𝑠

(
𝑎2

4𝑘𝑓
)

 

So solving this we get, 

𝑞 =  
𝑇𝑚 −  𝑇𝑠

(
1

4𝜋𝐻𝑘𝑓
)

                                                           (3.52) 

The thermal resistance fuel is clearly 

𝑅𝑓 =
1

4𝜋𝐻𝑘𝑓
 

Similarly now for the cladding, 

𝑑2(𝑇)

𝑑(𝑟2)
+  

1

𝑟

𝑑(𝑇)

𝑑(𝑟)
= 0 

Thus, 

𝑇 = 𝐶1 ln 𝑟 + 𝐶2 
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We know that  𝑇(𝑎) =  𝑇𝑠 𝑎𝑛𝑑 𝑇(𝑎 + 𝑏) = 𝑇𝑐 

And to find the constants, 

𝑇 =  
𝑇𝑠 . ln(𝑎 + 𝑏) −  𝑇𝑐. 𝑙𝑛 𝑎 − (𝑇𝑠 − 𝑇𝑐)  ln 𝑟

ln (1 +
𝑏
𝑎)

                                 (3.53) 

 

Cladding temperature thus can be found by, 

𝑞 =  −2𝜋. (𝑎 + 𝑏). 𝐻. 𝑘𝑐.
𝑑𝑇

𝑑𝑟
 

We also find from differentiation of equation (3.53) 

𝑞 =  
2𝜋𝐻𝑘𝑐(𝑇𝑠 − 𝑇𝑐)

ln (1 +
𝑏
𝑎)

                                                       (3.54) 

The cladding resistance thus can be given by, 

𝑅𝑐 =
ln (1 +

𝑏
𝑎)

2𝜋𝐻𝑘𝑐
                                                            (3.55) 

b<<a and in this case, 

𝑙𝑛 (1 +  
𝑏

𝑎
)  ≅  

𝑏

𝑎
 

Now equation (3.55) can be written as  

𝑅𝑐 =
b

2𝜋𝑎𝐻𝑘𝑐
                                                            (3.56) 

The heat flowing from the rod outside is, 

𝑞 =  
(𝑇𝑚 −  𝑇𝑐)

 (𝑅𝑓 + 𝑅𝑐)
                                                        (3.57)  
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3.3.7     Space-Dependent Heat Sources 

From previous calculations we know 

𝑞′′′ = 𝑞′′′𝑚𝑎𝑥 cos (
𝜋𝑧

�̃�
) 

Where z = measure from the mid-point of the rod. A non-uniform heat distribution like the above 

equation gives a non-uniform temperature distribution. 

Since rate of heat generation is 

𝑞 = 𝜋𝑎2𝐻𝑞′′′ 

Heat flux, 

 𝑞′′(𝑧) =  
𝑞

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑜𝑑
 =

𝜋𝑎2𝐻𝑞′′′

2𝜋(𝑎 + 𝑏)𝐻
 =  

𝑎2𝑞′′′(𝑧)

2(𝑎 + 𝑏)
              (3.58) 

By dividing Eq. (3.57) by 2𝜋(𝑎 + 𝑏)𝐻: 

𝑞′′(𝑧) =
(𝑇𝑚(𝑧) −  𝑇𝑐(𝑧))

2𝜋. (𝑎 + 𝑏). 𝐻. (𝑅𝑓 + 𝑅𝑐)
                                         (3.59) 

 

3.3.8     Heat Transfer to Coolant 

By Newton's law of cooling: 

𝑞′′ = ℎ(𝑇𝑐 − 𝑇𝑏) 

Where  

𝑞′′ - Flux, 

𝑇𝑐 - Temperature of the surface of the solid 

𝑇𝑏 - Appropriate reference temperature of the fluid.  

h=5000 𝐵𝑡𝑢/ℎ𝑟𝑓𝑡2℉ for ordinary water 

h =8000 𝐵𝑡𝑢/ℎ𝑟𝑓𝑡2℉ for heavy water. 

𝑇𝑏 is taken to be the mixed mean or bulk temperature of the fluid. This is defined by the formula, 

𝑇𝑏 =
∫ 𝜌𝑐𝑝𝑣𝑇 𝑑𝐴𝑐

∫ 𝜌𝑐𝑝𝑣 𝑑𝐴𝑐
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Thus heat between the solid and liquid face can be given by, 

𝑞 = 𝑞′′. 𝐴 = ℎ. 𝐴. (𝑇𝑐 − 𝑇𝑏)                                                 (3.60) 

Therefore, 

𝑞 = 𝑞′′𝐴 =
(𝑇𝑐 − 𝑇𝑏)

(
1

ℎ𝐴
)

                                                          (3.61) 

Thus the thermal resistance for convective heat transfer = 1/ℎ𝐴. 

Therefore plate-type fuel element with cladding has a thermal resistance of,  

𝑅 =  
𝑎

2𝑘𝑓𝐴
+

𝑏

𝑘𝑐𝐴
+

1

ℎ𝐴
                                                    (3.62) 

Therefore the total heat flow can be given by, 

𝑞 =
(𝑇𝑚 − 𝑇𝑏)

𝑎
2𝑘𝑓𝐴

+
𝑏

𝑘𝑐𝐴
+

1
ℎ𝐴

  
                                                  (3.63) 

Similarly for cylinder the thermal resistance will be 

𝑅 = (
1

4𝜋𝐻𝑘𝑓
) +

ln (1 +
𝑏
𝑎)

2𝜋𝐻𝑘𝑐
+

1

ℎ𝐴
                                       (3.64) 

Where 𝐴 = 2. 𝜋. (𝑎 + 𝑏). 𝐻 and now if 𝑎 ≪ 𝑏, 

𝑅 = (
1

4𝜋𝐻𝑘𝑓
) +

b

2𝜋𝑎𝐻𝑘𝑐
+

1

ℎ𝐴
                                        (3.65) 

And we know, 

𝑞 =
𝑇𝑚 − 𝑇𝑏

𝑅
 

Again we need to find the heat flux in the z direction which is given by 

𝑞′′(𝑧) =  
𝑞

2𝜋(𝑎 + 𝑏)𝐻
=

𝑞′′′. 2𝜋𝑎2𝐻

2𝜋(𝑎 + 𝑏)𝐻
 

Therefore 

𝑞′′(𝑧) =  
𝑞′′′𝑎2

(𝑎 + 𝑏)
                                                      (3.66) 
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And we know, 

𝑞 = 𝑞′′′. 2𝜋𝑎2𝐻 =
𝑇𝑚 − 𝑇𝑏

𝑅
                                            (3.67) 

So, 

𝑞′′′ =
𝑇𝑚 − 𝑇𝑏

𝑅. 2𝜋𝑎2𝐻
                                                     (3.68) 

Now substituting this in (3.66) 

𝑞′′(𝑧) =  
(𝑇𝑚(𝑧) − 𝑇𝑏(𝑧))

 2. 𝜋. (𝑎 + 𝑏). 𝐻. 𝑅
                                             (3.70) 

Considering the cladding temperature, 

𝑞′′(𝑧) =  
𝑇𝑐(𝑧) − 𝑇𝑏(𝑧)

 2𝜋(𝑎 + 𝑏)𝐻𝑅ℎ
= ℎ[𝑇𝑐(𝑧) − 𝑇𝑏(𝑧)]                          (3.71) 
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CHAPTER 4 

RESULTS 

 

4.1      2-D Geometry Design 

 

 

Figure 4.1: 2-D Geometry for the section where water passes 

Figure 4.2: Side View to see the 2-D thickness 
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4.1.1     Working Fluid Properties 

We have taken water as the working fluid. The basic properties of the working fluid are: 

 

The flow velocity of the fluid at the inlet wall is 0.9 m/s. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Working fluid properties 
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4.2     Meshing 

4.2.1    Meshing Details 

Figure 4.4: Meshing Details 
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4.2.2     Meshing Figures 

 

 

 

 

Figure 4.5: Meshing section 

Figure 4.6: Zoomed Meshing 
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Meshing is very important to get accurate results. Thus in the part of the heat transfer from the 

cylindrical wall to the flowing water it is important to be precise. We used high smoothing fine 

structure to get better results. A total of 114158 elements were created with 60725 nodes. 

 

 

Figure 4.7: Detailed Meshing near the cylinder wall 

Figure 4.8: Simple Meshing at the inlet wall 
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4.3     Iterations 

We studied the model for 1000 iterations to get a steady state result. 

 

 

4.4     Static Pressure 

4.4.1     Static Pressure on Cylinder Walls 

We see the static pressure on the various cylinder walls and the results are as follows. This is 

a cumulative graph for all the walls and thus we see many results superimposed. 

Figure 4.9: Iterations 

Figure 4.10: Static Pressure on Cylinder Walls 
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4.4.2    Static Pressure on Boundary walls 

As the velocity of the flow increase after the flow through the cylinder, the pressure has to 

drop. This is seen perfectly in the following figure. 

4.4.3     Static Pressure of the Flow 

Since the overall body can be perceived as a cylinder, we see that the pressure drops from the 

center of the body towards the end. This is because the velocity of the flow increases as we 

move towards the outlet wall. 

  

Figure 4.11: Static Pressure on Boundary walls 

Figure 4.12: Static Pressure of Flow (Contour) 
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4.5    Variation in Velocity 

As discussed earlier there is change in velocity as it flows through the cylinder walls and it can 

be seen from the following vector and contour plots. 

 

 

 

 

Figure 4.13: Static Pressure of Flow Plot 

Figure 4.14: Contours of Velocity Magnitude 

59 



 

 

There is vortex formation which can be seen in the velocity vector when we take a closer look 

at it. This is due to the flow of fluid across the cylinder. 

 

 

 

 

 

 

 

Figure 4.15: Velocity Vectors 

Figure 4.16: Velocity Vortex formation 
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4.6      Static Temperature 

We take the surface temperature on the cylindrical fuel elements after the cladding to be 800K 

and the fluid entering at 293K and see the flowing change in the static temperature. 

 

The surface temperature of the cladded cylindrical fuel element is seen from the following 

image. 

 

 

 

 

 

Figure 4.17: Contours of Static Temperature 

Figure 4.18: Temperature of the cylindrical surface (approx. 773K) 

61 



 

CHAPTER 5 

CONCLUSION 

 

 

We studied the Neutron flux distribution in a nuclear reactor with two important theories: 

Diffusion Theory and Boltzman theory. With Nuclear Distribution we were able study the 

neutron transport and collisions. Selecting the type of Reactor according to neutron flux 

distribution and source of neutron generation. Continuing it, we were able to understand the 

concept of multiplication factor which helped us in the criticality analysis.  

We designed an algorithm that could calculate the criticality of the reactor according to the 

input parameters chosen from the user. It gave you the results whether the reactor is critical 

(k=1), subcritical (k<1) or supercritical (k>1). 

After the neutron flux generation study we were able to understand the heat generation in the 

reactor. We were able to correlate how the neutron flux generated caused the temperature rise. 

Then we studied the methods of heat transfer within the fluid and from the solid fuel structure 

to the working fluid. We studied the theoretical calculations for the surface temperatures of the 

nuclear fuel rod, the surface temperature after the cladding and ambient temperature of fluid 

after heat transfer with both conduction and convection. 

After the theoretical study of safe temperature limits we designed a 2-D model on ANSYS-

CFD to understand the fluid flow temperature, pressure and velocity variations. 

In the process of the whole project we learn the interdependence of neutron flux generated to 

the temperature and how the temperature would vary if there is a change in the criticality of 

the reactor. With the results we will be able to observe the safe operating parameters for a 

TRIGA MARK II power plant. 
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