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ABSTRACT
Density functional theory calculations are being routinely used to screen for new catalysts. Typically, this involves invoking
scaling relations leading to the Sabatier-type volcano relationship for the catalytic activity, where each leg represents a unique
potential determining an elementary step. The success of such screening efforts relies heavily not only on the prediction robust-
ness of the activity determining step, but also on the choice of the descriptor. This becomes even more important as these
methods are being applied to determine selectivity between a variety of possible reaction products. In this work, we develop
a framework to quantify the confidence in the classification problem of identifying the potential determining step for material
candidates and subsequently the pathway selectivity toward different reaction products. We define a quantity termed as the
classification efficiency, which is a quantitative metric to rank descriptors on the basis of robustness of predictions for identi-
fying selectivity toward different reaction products and the limiting step for the corresponding pathway. We demonstrate this
approach for the reactions of oxygen reduction and oxygen evolution, and identify that ∆GOOH∗ is the optimal descriptor to clas-
sify between 2e− and 4e− oxygen reduction. We further show that ∆GOH∗ and ∆GOOH∗ have comparable performance in identifying
the limiting step for 4e− oxygen reduction reaction. In the case of oxygen evolution, we study all possible 2 descriptor models and
identify that {∆GOOH∗,∆GO∗ } and {∆GOH∗ ,∆GO∗ } both are highly efficient at classifying between 2e− and 4e− water oxidation. The
presented methodology can directly be applied to other multi-electron electrochemical reactions such as CO2 and N2 reduction
for improved mechanistic insights.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5056167

I. INTRODUCTION
Density functional theory (DFT) calculations have been

used extensively to understand reaction mechanisms and
products for electrochemical reactions. The formulation of
the computational hydrogen electrode has allowed the deter-
mination of free energy diagrams (FEDs), which have been
used to extract the thermodynamic limiting potentials, and
have been used quite successfully in rationalizing trends
in reactivity over a broad range of materials for oxy-
gen electrochemistry.1–5 While there has been tremendous
success in determining reactivity trends for a particular
electrochemical reaction, there has been very limited success

in determining selectivity for electrochemical reactions, e.g.,
2e− vs. 4e− oxygen reduction and evolution, and oxygen evolu-
tion vs. chlorine evolution.6–10 The electrochemical reactions
of great interest in the community, CO2 and CO reduction and
N2 reduction, have numerous possible products including the
competing hydrogen evolution.11–15 Thus, the next major
frontier for computational electrocatalysis is to determine
product selectivity and competing reaction pathways with
high fidelity models.16,17

In parallel, uncertainty quantification and propagation
has emerged as an important approach that allows us in a
systematic way to determine the fidelity of density functional
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theory predictions.18–20 Building on the built-in error esti-
mation capability in the Bayesian Error Estimation Functional
with van der Waals (BEEF-vdW) exchange correlation (XC)
functional, we have used this for optimal descriptor selection
to predict electrocatalytic activity,21 quantify confidence in
surface phase diagrams,22,23 and determine a variety of bulk
properties.24,25 Most notably, in a previous study, we have
defined a quantity called prediction efficiency, which pro-
vides a quantitative measure of the ability to distinguish the
activity of materials and can be used to identify the optimal
descriptor(s).21 However, the problem of determining prod-
uct selectivity and the limiting step is a classification problem.
Thus, it is important to quantify how robust the determined
reaction product is to the choice of the exchange correlation
functional.

In this work, we address the challenge of determining
the optimal choice of descriptor(s) from the standpoint of
maximizing the ability to classify product selectivity and the
limiting elementary step(s). In order to do this, we define
a quantity termed as classification efficiency, which is a
measure of the ability to classify the outcome (for example
reaction product, limiting the elementary step) using compu-
tations with finite accuracy. Based on this quantity, we can
precisely determine the optimal descriptor(s) by maximizing
the classification efficiency over the material range of interest.
Specifically, we demonstrate this approach on the reactions of
oxygen reduction and evolution and find that the free energy
of the OOH∗ intermediate is the optimal descriptor for the
former and that a two-descriptor model with the free ener-
gies of the OH∗ and O∗ intermediates is optimal for the latter.
We believe that this approach will be extremely important for
multi-electron electrochemical reactions such as CO2 and N2
reduction.

II. METHODS
A. Calculation details

All DFT calculations were performed using the projec-
tor augmented-wave (PAW) method26 as implemented in the
GPAW package27 with the Bayesian Error Estimation Func-
tional with van der Waals (BEEF-vdW) exchange correlation
functional, which has built-in error estimation capabilities. For
all adsorption free energy calculations, the two bottom layers
of the unit cell were kept fixed and the top two layers with
the adsorbates were allowed to relax with a force criterion of
<0.05 eV/Å. A Fermi smearing of 0.01 eV was used, and all
calculated energies were extrapolated to an electronic tem-
perature of 0 K. Gas phase H2O was used as the reference
state for oxygen by assuming equilibrium with liquid water
at 298 K and 0.035 bar,3 to avoid well-known errors within
DFT in describing the energy of O2. The effect of the electric
field in the Helmholtz layer is not taken into account as this
effect is negligible for adsorbates with small dipole moments
perpendicular to the surface.28

The BEEF-vdW functional is developed on the basis of
Bayesian statistics, which defines the probability distribution

(P) denoted as P(a |θ, D) ∼ exp[−C(a)/τ] where a represents
model parameters of the model, θ, and training data set, D.
C(a) represents the cost function to avoid over-fitting, and
τ denotes the cost “temperature.” Given a dataset, D, con-
sisting of experimental sets of energetic and structural data
describing bonding in chemical and condensed matter sys-
tems, a model perturbation, represented as δa, is associ-
ated with a probability that defines an ensemble of exchange
correlation functionals.29 The electron density derived from
a self-consistent DFT calculation converged with the best-
fit model parameters is used with the distribution of fitting
parameters to generate an ensemble of energies non-self-
consistently, which has shown to be representative of the
error in the predictions of best-fit functional with respect to
the experimental training data.24,25,29–31 The cost tempera-
ture (τ) is chosen such that the generated ensemble energies
reproduce known experimental errors in the entire bench-
mark dataset, with no ensemble rescaling,30 consistent with
our prior studies.21,24,25,31

In this work, the effect of solvation on the free energies
of adsorbed intermediates is assumed to be negligible on the
considered rutile (110) oxide surfaces owing to the hydropho-
bic nature of the oxide surfaces due to which a well-connected
water network is typically not present and not in the registry
with the underlying oxide surface.32,33 Although the effect of
solvation based on the interaction of water molecules on metal
surfaces has led to more accurate activity predictions,34–38 the
effect of the water layer interaction and the solvation struc-
ture of water around oxygen intermediates are not established
on rutile oxide surfaces. Tackling this is beyond the scope of
the current work.

B. Bayesian error estimation framework
and the ensemble-based approach

A systematic methodology to estimate the uncertainty
in energetics computed through DFT calculations exists with
the recent development of the Bayesian Ensemble Error
Functional with van der Waals correlations (BEEF-vdW),29

which is a semi-empirical exchange correlation (XC) func-
tional including non-local contributions, developed based on
training datasets including chemisorption on solid surfaces,
molecular formation energies, molecular reaction barriers,
molecular reaction energies, non-covalent interactions, and
solid-state properties. The exchange correlation energy in
the BEEF-vdW XC functional is expressed as the sum of the
exchange energy under the generalized gradient approxima-
tion (GGA) expanded using Legendre polynomials, the local
density approximation (LDA) and the PBE39 correlation ener-
gies, and the non-local correlation energy from vdW-DF2,40

which is represented as

Exc =
∑
m

amEGGA−x
m + αcELDA−c

(
1 − αc

)
EPBE−c + Enl−c.

The parameters am and αc are optimized to obtain the
best fit with respect to the training datasets. The error
estimation capability within the functional is enabled by
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deriving an ensemble of energies non-self-consistently from
an ensemble of exchange correlation functionals using the
electron density from the self-consistent DFT calculation.
The ensemble of exchange correlation functionals is gener-
ated using a probability distribution function (PDF) of the
parameters, am and αc, such that the standard deviation of
the ensemble of energies computed self-consistently using
BEEF-vdW reproduces the standard deviation for the training
properties.

We obtain an ensemble of scaling relations [Figs. S1(a)
and S1(b)] between the oxygen intermediates from the ensem-
ble of exchange correlation functionals within the BEEF-vdW
functional, which allows us to construct an ensemble of free
energy diagrams for a given material descriptor value based
on a descriptor choice. For the example of 4e− reduction
of O2 to H2O, the activity descriptor choice, Gd, which is
typically the adsorption free energy of an oxygen interme-
diate, fixes one free energy level of the three variable free
energy levels (∆GOOH∗ , ∆GO∗ and ∆GOH∗ ) of the FED at a
given temperature and pressure. The ensemble of scaling rela-
tions leads to an ensemble of free energies for the other two
levels, with a resulting ensemble of free energy diagrams.
The limiting potential for reduction to H2O corresponding
to the nth member of the ensemble of FEDs is given by
Un

L = min(U1,n
L ,U2,n

L ,U3,n
L ,U4,n

L ), where Ui,n
L = |∆Gn

i |, the free
energy of the ith step of the reduction process by protons at
0 V vs. the reversible hydrogen electrode (RHE). This results
in an ensemble of limiting potentials, where each member
is associated with a unique activity determining step, cor-
responding to the ensemble of GGA-level exchange correla-
tion functionals. A similar approach is employed to obtain the
ensemble of limiting potentials from the associated poten-
tial determining elementary steps for the oxygen evolution
reaction.

C. Quantifying confidence in the predicted
reaction pathway

The predicted active reaction pathway or a set of active
pathways for a given reaction, for example, oxygen reduc-
tion or evolution, varies with materials as a function of the
chosen material descriptor (denoted as Gd) represented as
ppred(Gd), which maps any given value of the chosen descriptor
to the corresponding prediction of active reaction pathway(s)
from the set of possible selectivity outcomes denoted by {0, 1,
2, . . ., i, . . ., n}, where i denotes the ith pathway or a simulta-
neous occurrence of more than one pathway. i = 0 indicates
no active reaction pathway and n = 2k − 1 =

[ ∑k
i=1 (ni )

]
− 1,

where k is the number of distinct pathways, which equals 2
for the case of oxygen reduction on metal surfaces. For both
oxygen reduction and oxygen evolution, predominantly the
4e− and 2e− pathways occur, leading to n = 3 for these reac-
tions with i = 3 denoting an equal limiting potential for both
pathways.

We quantify the confidence in the predicted reaction
mechanism(s) as a function of the descriptor D through a
Bayesian error-estimation approach as discussed in Sec. II B.

The ensemble of functionals results in an ensemble of free
energy diagrams and thereby an ensemble of active reaction
pathways, allowing us to obtain a measure of the confidence
in a predicted reaction pathway by quantifying the agree-
ment between functionals. We use the c-value,22,24 which in
this context can be defined as the fraction of the ensemble
that predicts that a given pathway is active, and a generalized
relation can be written as

cppred=i(Gd) =
1

Nens

Nens∑
n=1

δ(pnpred(Gd) − i), (1)

where n denotes the nth functional, Nens is the total number
of functionals in the ensemble, and δ(x) denotes the Kronecker
delta function.

D. Quantifying confidence in the predicted potential
determining step

The predicted potential determining elementary step for
an identified reaction pathway, which is a function of the cho-
sen material descriptor, Gd, represented as PDS(Gd) for the
potential determining step (PDS), maps any given value of the
chosen descriptor to the corresponding potential determin-
ing step from the set of possible pathways denoted by {1, 2,
. . ., i, . . ., n}, where i denotes the ith elementary step. There-
fore, for the 4e− pathways and 2e− pathways, n = 4 and n = 2,
respectively.

We quantify the confidence in the predicted potential
determining step for a given reaction pathway as a function
of the descriptor D using a similar approach to that discussed
in Sec. II C. The ensemble of functionals results in an ensemble
of free energy diagrams and thereby an ensemble of potential
determining steps, allowing us to obtain a measure of the con-
fidence in a predicted potential determining step by quantify-
ing the agreement between functionals. We define a c-value
here as the fraction of the ensemble that predicts that a given
step is the potential determining step, which can be expressed
as

cPDS=i(Gd) =
1

Nens

Nens∑
n=1

δ(PDSn(Gd) − i), (2)

where n denotes the nth functional, δ(x) denotes the Kro-
necker delta function, and Nens refers to the total number of
functionals in the ensemble.

E. Classification efficiency based descriptor ranking
We note that the optimal descriptor choice for max-

imizing predictability with respect to one material clas-
sification, for example identifying the activity determining
elementary step, could be different from that for a dif-
ferent material classification, for example identifying path-
way selectivity. Therefore, pertaining to each context, we
define a descriptor classification efficiency over a range of

descriptor values (∆Gstart
d to ∆Gend

d ) of interest, ηcls
���
∆Gend

d

∆Gstart
d

, as

a measure of the agreement between GGA-level function-
als with respect to the corresponding material classification
objective.
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Descriptors can be ranked based on the predictability of
the potential determining step (PDS) using the ηPDS

cls based
on the highest c value, cMPDS(Gd, σ → 0), over a range of
descriptor values of interest, which is computed as

ηPDS
cls |

∆Gend
d

∆Gstart
d
=

∫
∆Gend

d
∆Gstart

d
cMPDS(Gd,σ)dGd

∫
∆Gend

d
∆Gstart

d
cMPDS(Gd,σ → 0)dGd

. (3)

Similarly, descriptors can be ranked based on the pre-
dictability of pathway selectivity (active mechanism) using the
ηsel
cls based on the highest c value, max(csel)(Gd, σ → 0), over

a range of descriptor values of interest, which is computed
as

ηsel
cls |
∆Gend

d
∆Gstart

d
=

∫
∆Gend

d
∆Gstart

d
max(csel(Gd,σ))dGd

∫
∆Gend

d
∆Gstart

d
max(csel(Gd,σ → 0))dGd

. (4)

For the two-descriptor model for the oxygen evolution reac-
tion, we define the metric for predictability with respect to
identifying the potential determining step (PDS) as

ηPDS
cls |

∆Gend
d1 ,∆Gend

d2
∆Gstart

d1 ,∆Gstart
d2

=

∫
∆Gend

d1
∆Gstart

d1
∫
∆Gend

d2
∆Gstart

d2
cMPDS(Gd1,Gd2,σ)dGd1dGd2

∫
∆Gend

d1
∆Gstart

d1
∫
∆Gend

d2
∆Gstart

d2
cMPDS(Gd1,Gd2,σ → 0)dGd1dGd2

. (5)

III. RESULTS
Our ensemble-based approach to robustly determining

pathway selectivity and the activity determining elementary
step(s) is demonstrated for the reactions of oxygen reduction
and oxygen evolution.

A. Benchmarking of the adsorption free energy PDF
We perform a validation to address the issue of the

physical meaningfulness of the ensemble of energies gen-
erated non-self-consistently within the BEEF-vdW XC func-
tional. This is essential since a self-consistent method of
estimating uncertainty (relaxing structure for every func-
tional in the ensemble) is extremely computationally expen-
sive. It is worth highlighting that there is sufficient evidence
to suggest that the energy distribution generated using the
non-self-consistent approach is a good representative sam-
pling of the probability density function (PDF) of the com-
puted free energy.21–25,30,31 In the context of this work, we
show that energy distributions from this methodology bound
the energy predictions by other GGA-level functionals: PBE,
RPBE, and optPBE-vdW. Computed adsorption energy distri-
butions of the oxygen intermediates calculated on the con-
sidered metal surfaces for oxygen reduction using the gas
phase water and hydrogen reference scheme are shown in
Figs. 1(b), 1(c), and 1(d). The error bars represent one standard

FIG. 1. Adsorption free energies of OH∗, O∗, and OOH∗ on various transition met-
als as predicted by RPBE, PBE, optPBE-vdW, and BEEF-vdW XC functionals. The
energies are referenced to the adsorption free energy of the corresponding inter-
mediates on the Pt(111) surface. The error bars represent the standard deviation
in the adsorption free energy as predicted by the ensemble of functionals gen-
erated using the BEEF-vdW XC. The dotted black line represents adsorption free
energy of the intermediates on an “ideal” catalyst (peak of the activity volcano). We
observe that the distribution emerging from the BEEF-vdW XC functional bounds
the predictions by other functionals, indicating that this is a good representative
probability density function for the predictions at the GGA-level of DFT.

deviation of the distribution computed from the BEEF-vdW
XC functional, from which we demonstrate that the major-
ity of the predicted energies lies within the one standard
deviation bound estimated, which indicates that the obtained
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distributions are a good representation of variations within
the GGA-level of DFT. Similarly, Fig. 2 shows adsorption
energy distributions of the three oxygen intermediates (O∗,
OH∗, and OOH∗, respectively) calculated on the considered
rutile oxides for oxygen evolution using the gas phase water
and hydrogen reference scheme. We observe that a major

FIG. 2. Adsorption free energies of OH∗, O∗, and OOH∗ on the (110) surface of var-
ious rutile oxide catalysts active for oxygen evolution as predicted by RPBE, PBE,
optPBE-vdW, and BEEF-vdW XC functionals. The energies here are referenced
to the adoption free energy of various intermediates on IrO2. The error bars depict
the standard deviation in the adsorption energy as predicted by the ensemble of
functionals generated using the BEEF-vdW XC functional. This demonstrates that
the distribution emerging from the BEEF-vdW XC functional is a reasonable rep-
resentative probability density function for the predictions at the GGA-level of DFT
for most metal oxides.

fraction of the energies predicted lies within the one standard
deviation limits pertaining to the BEEF-vdW XC functional.
It is worth noting that nearly all points lie within the two
standard deviation limit since only ≈66% of the data points
lie within one standard deviation of a Gaussian distribution,
which is a good approximation for the nature of the obtained
energy distributions. This approach to quantitative error esti-
mation in DFT is aimed at capturing the sensitivity of DFT-
predicted properties to the choice of exchange-correlation
approximation (defined by the model parameters a), which
is an important source of uncertainty that has widely been
applied to predictions of (electro)catalytic activity, mechani-
cal properties of solids, magnetic ground states, stable surface
species under electrochemical conditions, dominant reaction
pathways, etc.21–25,30,31

B. Oxygen reduction on metal surfaces
The mechanistic understanding of the oxygen reduction

reaction (ORR) has predominantly been enabled by surface
electrocatalysis on well-defined materials41–50 through den-
sity functional theory calculations51–57 in conjunction with
surface analytical tools.47,50,58–61 Several descriptor-based
computational screening approaches have been reported with
different descriptor choices based on free energy scaling
between the oxygen intermediates.31,62 Greeley et al. used the
adsorption free energy of oxygen as the activity descriptor
and demonstrated that Pt-based binary alloys have the poten-
tial to surpass the activity of Pt,62 while Ifan et al. used the
free energy of OH∗ intermediate as the descriptor to iden-
tify that Pt5La exhibits activity of platinum.63 In a recent
study,21 we demonstrated a quantitative approach to choos-
ing the right descriptor for maximizing the activity predic-
tion efficiency given a threshold activity of interest. In this
work, we use classification efficiency as a quantitative met-
ric to identify the most appropriate descriptor choice(s) from
the standpoint of maximizing the robustness of predictions of
pathway selectivity and the activity determining elementary
step.

A measure of the electrocatalytic activity for ORR is the
limiting potential, which is determined by constructing the
free energy diagram (FED) based on intermediates OOH∗, OH∗,
and O∗ by following the associative mechanism for the 4e− and
the 2e− reduction pathways to H2O and H2O2, respectively.51

We transition from the simplified Sabatier volcano picture for
ORR, where the potential determining step is assumed to be
either O2 + H+ + e− 
 OOH∗ or OH∗ + H+ + e− 
 H2O (first
step or the last, respectively) to determine the activity (limit-
ing potential) from the limiting step of the FED. This transition
to a higher fidelity model is particularly important for accu-
rate activity determination of materials closer to the top of the
volcano, which is where the primary focus of screening stud-
ies lies, due to the fact that the first and last elementary steps
determine the activity for most materials that are very strong
or weak binding. Therefore, given a descriptor choice,1,63,64

we utilize scaling relations65 between these intermediates
to construct the FED and thereby determine the limiting
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potential. We consider several metal facets: Pt(111), Pt(100),
Pt3Ni(111), Au(111), Au(100), Ag(111), Ag(100), Pd(111), and Pd(100)
to construct the scaling relations. Utilizing the Bayesian error
estimation capabilities within the BEEF-vdW exchange corre-
lation functional, we obtain an ensemble of scaling relations
[Figs. S1(a) and S1(b)] between the oxygen intermediates. This
allows us to construct an ensemble of free energy diagrams for
a given descriptor choice and an associated descriptor value.
We first discuss the case of the free energy of OH∗, GOH∗ , as
the descriptor, where the limiting potential for the 4e− reduc-
tion to H2O for the nth member of the ensemble of FEDs is
given by Un

L = min(U1,n
L ,U2,n

L ,U3,n
L ,U4,n

L ), where Ui,n
L = |∆Gn

i |,
the free energy of the ith step of the reduction process by
protons. This results in an ensemble of limiting potentials,
where each member is associated with a unique activity deter-
mining step, corresponding to the ensemble of GGA-level
exchange correlation functionals within the BEEF-vdW fam-
ily of functionals. A similar approach is employed to obtain the
ensemble of limiting potentials from the associated potential
determining elementary steps for the 2e− oxygen reduction to
H2O2.

We determine the most appropriate descriptor for maxi-
mizing prediction robustness of pathway selectivity based on
the highest classification efficiency, ηsel

cls . ηsel
cls , η4e−

cls , and η2e−
cls for

a given descriptor are computed over a continuous descriptor
range that encompasses the 1-standard-deviation (1-σ) lim-
its of descriptor distributions of all considered metal surfaces.
We find that the highest ηsel

cls occurs for the descriptor choice
of ∆GOOH∗ . With confidence values (c-values) close to 1, which
indicates a high degree of agreement between functionals at
the GGA-level, we predict that the 4e− reduction is thermo-
dynamically favorable in the range 2.5 / ∆GOOH∗ / 4.25 eV
and that both (2e− and 4e−) pathways are equally thermody-
namically favorable in the range ∆GOOH∗ ' 4.25. We rational-
ize the highest predictability corresponding to the descriptor
∆GOOH∗ based on the fact that OOH∗ is the only intermediate
in the reduction to hydrogen peroxide and that the 2e− activ-
ity can be computed without invoking scaling relations that
have greater uncertainty. In these descriptor ranges, we iden-
tify based on η4e−

cls and η2e−
cls the optimal descriptors for robustly

predicting the potential determining steps for the reduction
to H2O and H2O2, respectively. We find that ∆GOOH∗ as the
descriptor leads to the highest ηcls for both the pathways. In
the regime where the 4e− reduction is predicted with high
confidence, we predict that the OH∗ desorption step deter-
mines the potential with c-value ≈0.96 in the descriptor range
∆GOOH∗ / 3.8 eV, beyond which we predict a smooth transition
in the agreement between exchange correlation functionals
to the OOH∗ adsorption step determining the potential. This
trend is in agreement with prior literature since the OH∗ des-
orption step is known to be the limiting step for strong binding
materials and the OOH∗ desorption step is known to be the
limiting step for weak binding materials. In the regime where
both the pathways are predicted to be equally favorable, we
predict with high c-values (≈1) that the OOH∗ adsorption step
is the potential determining step for both the 4e− and 2e−

pathways.

We note that the optimal descriptor choice is a func-
tion of the materials of interest or the corresponding descrip-
tor range. The range of interest for a given descriptor, ∆Gd,

FIG. 3. Classification efficiency values quantifying the level of agreement between
functionals as to the dominant pathway (4e− or 2e−), ηsel

cls , for the free energies
of the three oxygen intermediates as potential descriptors. Since classification effi-
ciency is defined over a range of descriptor values, the contour maps show ηsel

cls as
a function of various ranges of interest uniquely represented by the start value and
the width of the range, denoted as ∆Gstart

d ∆Gwidth
d , respectively, where ∆Gd is

the descriptor. We observe that over the range of descriptor values correspond-
ing to all the considered metal surfaces, ∆GOOH∗ maximizes ηsel

cls . However, over
descriptor ranges corresponding to the distribution of a specific metal facet, for
example Pt(111) and Pt3Ni(111), we find that multiple descriptors lead to equally
high ηsel

cls values.
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can be specified by the start value of the range, ∆Gstart
d , and

the width of the descriptor range, ∆Gend
d − ∆Gstart

d . Figures 3
and 5 show the classification efficiency as a function of the
descriptor range for the free energies of oxygen interme-
diates as descriptors. We observe from Fig. 3 that for the
range of descriptor values corresponding to all the consid-
ered metal surfaces, the classification efficiency follows the
trend ηsel

cls (∆GOOH∗ ) > ηsel
cls (∆GO∗ ) ≈ ηsel

cls (∆GOH∗ ), identifying that
∆GOOH∗ is the optimal descriptor for selectivity between the
oxygen reduction to H2O and H2O2 on the basis of agree-
ment between functionals at the GGA-level level. The descrip-
tor range of interest pertaining to each individual considered
metal surface, computed as the continuous range between
the corresponding 1 σ limits from the DFT uncertainty is
shown using gray dots. The classification efficiency value cor-
responding to each material represents the degree of agree-
ment between functionals or the predictability with respect
to pathway selectivity. It is worth noting that the classifica-
tion efficiency value for a given material provides an a priori
understanding of the DFT predictability for materials with
very similar adsorption characteristics such as strained sur-
faces of the same material, which are likely to fall within
the 1 − σ uncertainty limits. We rationalize our finding of
the optimal descriptor (∆GOOH∗ ) for selectivity based on the
fact that the intermediate OOH∗ directly determines (no scal-
ing relations involved) the 2e− oxygen reduction activity and
the fact that ∆GOH∗ and ∆GOOH∗ are both superior and near-
optimal descriptors relative to ∆GO∗ as we demonstrate above
(Table I).

The ability of the three descriptors to identify the lim-
iting step for the corresponding pathway, determined based
on the c-values shown in Fig. 4, can be compared using the
classification efficiency metrics, η4e−

cls and η2e−
cls , as shown in

Fig. 5. For a given range of descriptor values of interest, the
descriptor with the highest η4e−

cls value indicates the highest
degree of agreement between functionals as to the limiting
step for the 4e− oxygen reduction; the same applies to η2e−

cls
with respect to the 2e− oxygen reduction. We observe that
for the descriptor range corresponding to all the considered
metal surfaces, the classification efficiency of the descriptors
follows the trend η4e−

cls (∆GOOH∗ ) ≈ η4e−
cls (∆GOH∗ ) > η4e−

cls (∆GO∗ ),
indicating that descriptors ∆GOOH∗ and ∆GOH∗ both lead to
high identifiability of the limiting step. For smaller descrip-
tor ranges of interest corresponding to specific materials such
as Au(100) and Au(111), we find that higher predictability is
achieved with ∆GOOH∗ relative to ∆GOH∗ as the descriptor,
whereas Pt3Ni(111) is an example of a material for which the

TABLE I. Comparison of ηcls for the oxygen reduction reaction on metal surfaces.
∆GOOH∗ as the descriptor leads to the highest classification efficiency for predicting
both pathway selectivity and the associated limiting step(s).

Descriptor choice ηsel
cls η4e−

cls η2e−
cls

∆GOH∗ 0.893 0.917 0.912
∆GO∗ 0.899 0.833 0.906
∆GOOH∗ 0.985 0.936 1

opposite trend holds, suggesting that ∆GOH∗ is a more appro-
priate descriptor for identifying the limiting step for the 4e−

oxygen reduction. We observe that for the 2e− reduction to

FIG. 4. Confidence values (c values) derived from the degree of agreement
between functionals within the BEEF-vdW XC functional as to the dominant reac-
tion pathway (c). c values associated with each step of the 2e− and 4e− pathways
to H2O2 and H2O indicating the robustness of predictions that a given step is the
limiting (potential determining) step. For a given material, the prediction for the
dominant reaction (2e− and 4e−) pathway can first be found based on (c), and for
the identified pathway, the corresponding PDS can be observed from (a) and (b).
In these figures, the confidence values are plotted on a material descriptor scale
that maximizes the classification efficiency (ηcls) for the corresponding classifica-
tion problem, which is computed to be ∆GOOH∗ for predictions of the dominant
pathway and the corresponding potential determining step.
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FIG. 5. c values indicating the robust-
ness of predictions that the most ther-
modynamically favorable reaction path-
way is the 4e− reduction (left panel) or
the 2e− reduction (right panel), shown
for the free energies of the oxygen inter-
mediates as descriptors. Since classifi-
cation efficiency is defined over a range
of descriptor values, the contour maps
show η4e−

cls and η2e−
cls as a function of

various ranges of interest which can
uniquely be represented by the start
value and the width of the range. The
points corresponding to individual metals
are based on 1-standard-deviation limits
from the distribution associated with the
BEEF-vdW functional, which are also of
interest when considering strained sur-
faces of the explored facets.

H2O2, the universal optimal descriptor choice for identifying
the limiting step is ∆GOOH∗ for all descriptor ranges of con-
sidered interest as can be seen from the relative η2e−

cls values
from Figs. 5(b), 5(d), and 5(f). We note that for this optimal
descriptor choice, nearly all functionals are in agreement
(η2e−

cls ≈ 1) with respect to identifying the potential determining
step for the 2e− reduction to H2O2. We rationalize the identi-
fied trends in predictability on the basis of the fact that the
use of ∆GO∗ as the descriptor involves invoking two scaling
relations in the construction of the free energy diagram, while
∆GOH∗ and ∆GOOH∗ use only one, leading to improved predic-
tion efficiency. For the 2e− reduction, the optimal descriptor
choice of ∆GOOH∗ can be explained based on the fact that this
intermediate is directly the tuning variable in controlling the
activity for this reduction pathway.

C. Oxygen evolution on rutile oxides

We demonstrate the approach for oxygen evolution
reaction, which is a crucial process for solar fuel genera-
tion and typically carried out under harsh oxidizing con-
ditions.66 The mechanistic understanding of the oxygen
evolution reaction on metal oxide systems has been gained
largely through experimental measurements.67,68 However,
owing to the difficulty associated with preparing well-
ordered single-crystalline oxides and the limited electrical
conductivity, surface characterization and chemisorption
energy measurements are challenging leading to limited
insights developed using this approach.69 Theoretical inves-
tigations have been limited by DFT accuracy in treating cor-
relation energies in transition metal oxides,70,71 leading to
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TABLE II. ηcls comparison for the oxygen evolution reaction on rutile oxide (110) sur-
faces. We observe that descriptor choices of {∆GOH∗ , ∆GO∗ } and {∆GOOH∗ , ∆GO∗ }

lead to equally high ηselcls , indicating a high predictability of pathway selectivity, but the
former choice is identified as the optimal descriptor since it leads to high predictability
in terms of PDS classification for both the pathways.

Choice of descriptors ηsel
cls η4e−

cls η2e−
cls

{∆GOH∗ , ∆GO∗} 0.97 0.95 1
{∆GOOH∗ , ∆GO∗} 0.97 0.94 0.95
{∆GOOH∗ , ∆GOH∗} 0.94 0.94 1

challenges in describing the surface electrochemistry. Mar-
tinez et al. showed that formation energies of rutile oxides can
be described well at the GGA level within DFT using appro-
priate reference schemes.72 Later, the existence of scaling
relations on rutile oxide and perovskite surfaces was shown by
Man et al. and identified reactivity trends for oxygen evolution
using the descriptor as the difference in the free energies of
two oxygen intermediates, ∆GO∗ − ∆GOH∗ .1 In a recent study,
we formulated an approach to identifying the right descrip-
tor(s) for maximizing the predictability of activity on the basis
of quantitative metrics since multiple choices of descriptors

FIG. 6. c values representing the degree of agreement between functionals as to the pathway selectivity and the limiting step of the corresponding identified reaction pathway
using the set of descriptors, {∆GOH∗, ∆GO∗ }, that maximize etaselcls, eta4e−

cls , and eta2e−
cls . (a)–(d) show the confidence values for the individual steps of the 4e− oxidation

pathway to O2, and (e) and (f) show the same for the 2e− pathway to H2O2. (g)–(i) show confidence values for the predictions of pathway selectivity toward the 4e− pathway,
the 2e− pathway, and both, respectively, based on thermodynamic favorability.
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have been explored without a common rationale.73 In this
work, on the basis of the classification efficiency, we present
a quantitative approach to determining optimal descriptor(s)
for identifying pathway selectivity and activity limiting steps.

We consider oxygen evolution on rutile oxide (110) sur-
faces of IrO2, RuO2, SnO2, TiO2, VO2, and PtO2 by assum-
ing the associative mechanism.1 We find that the scaling
between the adsorption energies of OOH∗ and OH∗ has a
slope close to 1 and the intercept is found to be 3.05.1,74

We construct the ensemble of free energy diagrams for the
surfaces by employing a two-descriptor model similar to
prior computational studies6,73 for higher predictability rel-
ative to a one-descriptor model. We explore all the combi-
nations of 2-descriptor models involving the free energies of
the three oxygen intermediates, ∆GOH∗ , ∆GO∗ , and ∆GOOH∗ , for
the construction of free energy diagrams. We identify optimal
descriptors for maximizing predictability of pathway selec-
tivity using ηsel

cls and that of limiting elementary step(s) using
ηne−
cls for the corresponding pathway (n indicates n-step path-

way) based on the ensemble approach outlined in Sec. II E.
We compute ηsel

cls and ηne−
cls for each two-descriptor model over

the corresponding continuous ranges of descriptor values that
encompass the 1-standard-deviation limits of the considered
rutile oxide surfaces. We identify based on our analysis that
for identifying pathway selectivity, descriptor combinations
{∆GOOH∗ , ∆GO∗} and {∆GOH∗ , ∆GO∗} both lead to high (≈0.97)
selectivity classification efficiency values (Table II) implying
a high degree of agreement between functionals at the GGA
level. However, it is worth highlighting that the descriptor
combination {∆GOH∗ , ∆GO∗} leads to higher predictability in
terms of identifying the limiting steps corresponding to the
4e− and 2e− oxidation pathways. Therefore, we find that the
optimal 2-descriptor model involves the free energies of inter-
mediates ∆GOH∗ and ∆GO∗ on rutile oxide materials of inter-
est. c-values corresponding to selectivity between oxidation
pathways to H2O2 and O2 and those pertaining to identify-
ing the PDS for the respective pathways are shown in Fig. 6.
We predict with high confidence (c-value ≈1) that materials
PtO2, IrO2, and RuO2 undergo the 4e− oxidation pathway. We
note that although RuO2 lies close to low confidence values, all
functionals suggest that the 4e− pathway is the most thermo-
dynamically favorable, indicating a high degree of agreement
between the functionals. It is worth highlighting that such
conclusions are uniquely possible through a Bayesian error
estimation framework as employed in this study and repre-
sent a powerful aspect of such ensemble-based approaches.
For these materials identified with the 4e− oxidation path-
way as the most favorable, we find that the oxidation step
from OH∗ to O∗ is the limiting step for PtO2, while the oxi-
dation from O∗ to OOH∗ determines the potential for IrO2.
Similarly, we identify with high certainty (c-value ≈1) that TiO2
and SnO2 undergo the 2e− oxidation pathway, for which our
analysis suggests based on Figs. 6(e) and 6(f) that the activa-
tion of water as adsorbed OH∗ on the surfaces is the limiting
step for SnO2, whereas for TiO2, the second step given by
the desorption of OH∗ as H2O2 is the potential determining
step.

IV. CONCLUSIONS
The developed quantitative framework based on the

ensemble of energies derived from the Bayesian error esti-
mation functional allows us to compute the confidence in the
classification problem of pathway selectivity toward differ-
ent reaction products and to identify the associated poten-
tial determining step for material candidates. The quantity
defined in this work, referred to as classification efficiency,
provides a basis for identifying optimal descriptor(s) for pre-
dicting selectivity toward different reaction products and the
limiting step(s) for the corresponding pathway. For the first
demonstrated example reaction of oxygen reduction, we show
that ∆GOOH∗ is the optimal descriptor to classify materials
between the 2e− and 4e− pathways for oxygen reduction.
Similarly, for oxygen evolution, all 2-descriptor models were
explored to identify that {∆GOOH∗,∆GO∗} and {∆GOH∗ ,∆GO∗} are
both highly efficient at classifying between the 2e− and 4e−

pathways for water oxidation. It is worth noting that although
the descriptor PDFs in this work have been derived from
the Bayesian error estimation framework within the BEEF-
vdW XC functional, the presented quantitative methodology is
applicable regardless of the origin of the descriptor distribu-
tion. The descriptor PDF could, for example, be obtained from
machine learning models75 that aim to reproduce experimen-
tal uncertainty associated with training datasets. The devel-
oped approach can directly be applied to other multi-electron
electrochemical reactions such as CO2 and N2 reduction for
improved mechanistic insights.

SUPPLEMENTARY MATERIAL

See supplementary material for additional information on
calculation details and ranking of descriptors on the basis of
classification efficiency metrics.
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13E. Skulason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl,
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